Project Residential Development at Hacketstown, Skerries, Co. Dublin

Report Title Engineering Services Report

Document Reference 190170-DBFL-XX-XX-RP-C-0001

JCTUR 5 NFRA

MARCH 2022

Project Title:	Residential Development at Hacketstown, Skerries, Co. Dublin		
Document Title:	Engineering Services Report		
File Ref:	190170-DBFL-XX-XX-RP-C-0001	rev:	P02

Rev.	Status	Date	Description	Prepared	Reviewed	Approved
P01	S2 - For Information	08/10/2020	Issued for Pre-Planning	Ryan Parkes	Ben Mong	Sarah Curran
P02	S2 - For Information	21/03/2022	Issued for Final Review	Ryan Parkes	Laura McLoughlin	Sarah Curran

Disclaimer

This specification has been prepared for the exclusive use of our Client and unless otherwise agreed in writing by the Designer no other party may use, make use of or rely on the contents of this specification.

The specification has been compiled using the resources agreed with the Client and in accordance with the scope of work agreed with the Client. No liability is accepted by The Designer for any use of this specification, other than the purpose for which it was prepared.

The Designer accepts no responsibility for any documents or information supplied to the Designer by others and no legal liability arising from the use by others of opinions or data contained in this specification. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

The Designer has used reasonable skill, care and diligence in compiling this specification and no warranty is provided as to the report's accuracy

			I
	Dublin Office	Cork Office	Waterford Office
	Ormond House	14 S Mall	Suite 8b, The Atrium
	Upper Ormond Quay	Centre	Maritana Gate, Canada Street
	Dublin 7	Cork	Waterford
	D07 W704	T12 CT91	X91 W028
	Ireland	Ireland	Ireland
DBFL CONSULTING ENGINEERS	+353 1 400 4000 info@dbfl.ie www.dbfl.ie	+353 21 202 4538 info@dbfl.ie www.dbfl.ie	+353 51 309 500 info@dbfl.ie www.dbfl.ie

Contents

1	In	troduc	tion1		
2	Foul Sewers4				
2	2.1 Existing Services				
2	2.2	Prop	osed Services		
3	Su	Irface \	Water7		
	3.1	Exist	ing Services7		
	3.2	Prop	osed Services		
	3.3	Susta	ainable Drainage Systems (SuDS)		
	3.3	3.1	Long Term Storage 11		
	3.3	3.2	Site Investigation		
	3.3	3.3	Permissible Site Discharge		
	3.3	3.4	Surface Water Runoff Coefficients		
	3.3	3.5	Regional Drainage Facility Design		
	3.3	3.6	Interception Volume		
	3.3	3.7	Treatment Volume		
	3.3	3.8	Surface Water Sewers		
4	Watermains				
4	4.1 Existing Services				
4	4.2 Proposed Services				
5	Flo	ood Ris	sk		
6	Tra	affic ar	nd Transportation		
7	Items Raised by Fingal at Pre-planning Stage				
8	Specific Information Requested by An Bord Pleanala				

Appendix A – Existing Services

- Appendix B Irish Water Confirmation of Feasibility and Statement of Design Acceptance
- Appendix C Foul Sewerage Calculations
- Appendix D SuDS Calculations
- Appendix E Permissible Site Discharge Calculations
- Appendix F Interception and Treatment Volumes Calculations
- Appendix G Surface Water Network Calculations
- Appendix H Surface Water Critical Storm Calculations
- Appendix I Water Demand Calculations

1 Introduction

DBFL Consulting Engineers were commissioned by the Applicant to prepare an Engineering Services Report (ESR) for the proposed Strategic Housing Development (SHD) at Hacketstown, Skerries, Co. Dublin. The application site comprises approximately 6.7 hectares – see **Error! Reference source not found.** below.

The subject lands are accessed via Golf Links Road to the south and Ballygossan Park to the north. The site is bound by the Dublin – Belfast trainline to the west, the Golf Links Road to the east and south, and by individual houses to the east and south. The site slopes at an approximate gradient of 1:20 from south to north.

Figure 1: Site Location with approximate SHD site outlined in red and approximate Advanced infrastructure application outlined in Blue (Source: Google Maps, 2022).

The development entails 345 no. residential units comprising of 84 no. 1-bed units, 93 no. 2-bed units (66 no. 2-bed apartments and 27 no. 2-bed duplexes), 167 no. 3-bed units (128 no. 3-bed duplexes and 39 no. 3 - bed houses) ranging in height from 2 no. – 4 no. storeys on a site of 6.7 ha. located at Hacketstown in the townlands of Milverton, Townparks and Hacketstown, Skerries, Co. Dublin.

The proposed development is set out in 8 blocks which comprise the following:

- Block A1 comprises 36 No. units at 4 storeys in height (Comprising a mix of 24 No. apartments & 12 No. Duplexes)
- Block A2 comprises 36 No. units at 4 storeys in height (Comprising a mix of 24 No. apartments & 12 No. Duplexes)
- Block B1 comprises 16 No. units at 3 storeys in height (Comprising all 3 bed Duplexes)
- Block B2 comprises 16 No. units at 3 storeys in height (Comprising all 3 bed Duplexes)
- Block C comprises 42 No. units at 2-3 storeys in height (Comprising 15 No. apartments & 27 No. Duplexes)
- Block D comprises 32 No. units at 2-3 storeys in height (Comprising 12 No. apartments, 2 No. Duplexes and 20 No. houses)
- Block E comprises 61 No. units at 2-3 storeys in height (Comprising 36 No. apartments & 25 No. Duplexes)
- Block F comprises 66 No. units at 2-3 storeys in height (Comprising 39 No. apartments & 27 No. Duplexes)
- Block G comprises 25 No units at 2-3 storeys in height. (Comprising 20 No. Duplexes and 5 No. houses)
- Block H comprises 14 No units at 2-3 storeys in height. (Comprising 14 No. houses)
- Public Open Space of c.16,670 sqm (25% of net developable area) is proposed including the parkland and main public square, in addition to the linear park of c.2,427 sqm;
- c.2,272 sqm communal open space is proposed to serve the apartments;
- 414 car parking spaces in total are proposed including 70 visitor spaces, creche set down and 3 for creche staff parking within undercroft and at surface level.
- 802 No. bicycle parking spaces comprising including 128 No. visitor spaces and 10 No. to serve the creche;
- Childcare and community facility of c.377 sqm. located in Block C;
- Upgrades to the Golf Links Road including new pedestrian and cycle infrastructure with frontage on Golf Links Road;
- Vehicular access off the Golf Links Road is to be provided to the southeast of the subject site;

In addition the proposal will provide a new internal link road which will connect to the adjacent lands to the north, for which a separate planning application has been made to Fingal County Council under Reg. Ref. F21A/0287. This application is currently under appeal to An Bord Pleanala (ABP Reg. Ref. 312189-21);

All associated site development and infrastructural works including amenity spaces, landscaping, open space, boundary treatments, vehicular parking, bicycle parking, utilities, internal roads, footpaths and shared surfaces, playground, site clearance and temporary construction development.

The project will be facilitated by advance infrastructural works. These works were the subject of a Section 34 application to Fingal County Council (FCC F21A/0287) as required. They are currently on appeal to An Bord Pleanala (ABP Reg. Ref. 312189). They consist of a connecting road to the north, drainage infrastructure, cycle and pedestrian facilities, and associated landscaping (the "AI Works").

The following terms are used throughout the ESR and explained below for clarity:

- 'The Proposed SHD' relates to the current application which has been submitted to ABP and is set out in detail above.
- The 'advanced infrastructure works' (AI) is subject of a Section 34 application, and that which is currently under consideration by ABP (Ref. ABP-312189-21).
- 'Ballygossan Phase 2' refers to the lands to the north in the ownership of Noonan Construction which has been the subject of an SHD pre-application to the Board (Ref. ABP 308583-20).
- Off-site road improvements which were granted by ABP and FCC (ABP Reg. Ref. 309409; FCC Reg. Ref. F20A/0324) to provide the necessary upgrades to local road network.

To the north of the site the AI development consists of a number of elements that will facilitate the construction of this proposed SHD including, but not limited to, a new Link Road crossing the Regional Drainage Facility which will provide access to the SHD from the existing Ballygossan Phase 2; Construction of Regional Drainage Facility (RDF) for the surface water management of the (now expired) Hacketstown LAP Lands; Services to facilitate this SHD including new surface water outlet structures; a new foul sewer to connect to the existing foul sewer network and a new watermain pipeline to connect to the existing water network.

The objective of this report is to provide information on the calculations, estimates and assumptions used to design the foul sewers, surface water sewers, surface water attenuation and Sustainable Drainage Systems (SuDS), watermains and road access for the proposed development.

2 Foul Sewers

2.1 Existing Services

As noted above, an Advanced Infrastructure Application (AI) was recently submitted to Fingal County Council under planning reference number F21A/0287. This application made provision for the foul sewer network infrastructure, located within the AI development boundary, required to facilitate this proposed development and its connection to the existing foul sewer infrastructure constructed as part of Ballygossan Phase 1 (a portion of which – external to the AI boundary - has now been taken in charge). See Appendix A for Irish Water records.

The existing 225mm diameter foul infrastructure will connect to an existing 375mm diameter foul sewer located approximately 265m to the east of the site in the Downside Park neighbourhood, before discharging to a 450mm diameter foul sewer in Holmpatrick. These sewers drain southwards along Holmpatrick/Rush Road, increasing to a 600mm diameter before discharging to the municipal pumping station. The foul sewage is then pumped to the Barnageeragh Wastewater Treatment Works.

O'Connor Sutton Cronin Multidisciplinary Consulting Engineers (OCSC) was previously involved with the planning application (ref. F11A/0309) for the adjacent Ballygossan Park development. In preplanning consultation, Fingal County Council requested that OCSC conduct an assessment of the receiving sewer to Holmpatrick. OCSC assessed the foul contribution from the catchment in accordance with the Environmental Protection Agency's Wastewater Treatment Manuals and with the recommendations of the Greater Dublin Strategic Drainage Study Regional Drainage Policy Volume 2 – New Development (GDSDS-RDP Volume 2).

The results of the assessment concluded that the receiving sewer has sufficient capacity for the existing catchment and for the proposed Hacketstown Lands development.

Please refer to Appendix A for the Existing Irish Water Services Layout.

2.2 Proposed Services

A pre-connection enquiry has been made to Irish water to confirm there is adequate capacity in the public network to accommodate the proposed development (Ref no. CDS 20001995). Irish Water has confirmed that this proposed wastewater connection is feasible without upgrade. The number of residential units proposed within the development has since been reduced, from the 380 units applied for, to 345 units.

This SHD is proposed to connect to the 225mm dia foul sewer to be installed as part of the AI submission. It is proposed that this development will be serviced internally by 150mm and 225mm diameter foul sewers and will include the provision of services connections, inspection chambers etc. throughout the site.

Irish water has noted that the existing foul sewer infrastructure to which the proposed foul infrastructure is planned to connect to has not been taken in charge by Irish Water (Third Party Infrastructure). As

stated above only the infrastructure constructed as part of Phase 1 external to the AI site boundary has been taken in charge at this time. At connection application stage and prior to the commencement of self-lay works the applicant will ensure and demonstrate;

- that the wastewater infrastructure within the Third Party Infrastructure is identified and transferred to Irish Water,
- that the arterial infrastructure is in compliance with requirements of Irish water Code of Practice and Standard Details and in adequate condition and capacity to cater for additional load from the development.

The applicant can confirm that the Third Party Infrastructure, as noted by Irish Water, is in the process of being transferred to Irish Water.

The proposed foul sewer network layout for the development is shown on DBFL drawing 190170-DBFL-FW-SP-DR-C-1021. Infrastructure included as part of the AI submission has been clearly delineated on the aforementioned layout.

See appendix B for a copy of the Irish Water Confirmation of Feasibility.

Foul sewers have been designed and will be constructed in accordance with the Irish Water's 'Standard Details for wastewater infrastructure' and 'Code of practice for wastewater infrastructure'. In addition, foul sewers have been designed to Building Regulations and specifically in accordance with the principles and methods set out in EN 752:2008 and DOE '*Recommendations for Site Development Works'*. In addition, HR Wallingford 'Tables for the hydraulic design of pipes, sewers and channels' and Water UK/WRc 'Sewers for Adoption – 6th Edition' have been applied. Values for roughness of uPVC pipes were obtained from Wallingford 'Tables for the Hydraulic Design of Pipes, Sewers and Channels' and Wavinsewer systems catalogue.

Foul sewers were sized using the EN752:2008 method in MICRODRAINAGE software, where:

$$Q = \frac{kDU\sqrt{\sum DU}}{\sqrt{\sum DU}}$$

The following design criteria have been applied in the design of foul sewers:

- i. Discharge units (DU), 3 per housing unit (6 litre cistern)
- ii. EN 752 Frequency, Factor (kDU) 0.5
- iii. Pipe Ks
 - a. 1.5 mm (concrete)
 - b. 0.6mm (uPVC for flow>0.5D)
 - c. 0.15mm (uPVC for flow<0.5D)
- iv. Minimum velocity, 0.75 m/s (self-cleansing vel.)
- v. Maximum velocity, 3 m/s

vi. Minimum gradients:

No. of Houses	Minimum Pipe Gradient
1	100mm dia. @ 1:60 or self cleansing gradient (private connection)
2-9	150mm dia. @ 1:60 or self cleansing gradient
>10	Min 150mm dia. or self cleansing gradient

Using Irish Water parameters, the peak flow from the site is calculated as 8.2 l/s, however using the EN752 method in MICRODRAINAGE software the peak flow is calculated as 16.1 l/s.

Sewers and drains shall be laid to comply with the requirements of the Building Regulations 1997 in accordance with the recommendations contained in the Technical Guidance Documents, Section H (revised 2005) and the Irish Water Code of Practice and Standard Details for Wastewater Infrastructure. Standard drainage details will be in accordance with the Greater Dublin Regional Code of Practice for Drainage Works and Irish Water Standard Details for Wastewater Infrastructure.

The proposed designs for the foul sewers have been issued to Irish Water's Quality Assurance Team for approval as is required by An Bord Pleanala as part of the Strategic Housing Development process. Irish Water has reviewed the design submission and has confirmed by issue of a 'Statement of Design Acceptance' that the designs are in accordance with the Irish Water Quality Assurance requirements and code of practice.

Please refer to Appendix B for a copy of Irish Water Confirmation of Feasibility and Statement of Design Acceptance letters.

Please refer to Appendix C for Foul Sewerage calculations.

Please refer to drawing number 190170-DBFL-FW-SP-DR-C-1021 for the proposed foul sewer layout.

3 Surface Water

3.1 Existing Services

The Hacketstown Lands (undeveloped portions) shed surface water run off to an existing small open watercourse located on the northern boundary of the subject lands. This watercourse comprises an open agricultural ditch that varies in depth to a maximum of approximately 1.8m. Please refer to 2 below for the location of the minor watercourse.

Figure 2: Minor Watercourse on Site

The watercourse drains eastwards to an existing stream which in turn drains northwards to the Downside Park neighbourhood. The stream is in culvert (1050mm diameter) through Downside and the adjacent public open space. From Rush Road (R128), the stream passes through a 1500mm diameter culvert before discharging to the Irish Sea approximately 700m to the east of the subject lands.

The northern boundary of the subject lands forms the northern catchment boundary of the minor watercourse. The railway embankment fence line forms the western catchment boundary. A topographical survey identified an existing culvert passing underneath the railway. The survey confirmed the railway culvert as being flat with a 2m drop westward to the Brook Stream. The function of this culvert, as confirmed by the topographical survey, is to drain the railway embankment only. This survey confirms that there is no upstream catchment to the minor watercourse.

As part of the previous planning application (ref. F11A/0309) for the adjacent Ballygossan Phase 1, OCSC submitted a Surface Water Management Report which set out the masterplan surface water strategy for the Hacketstown Lands. The strategy included for the provision of a Regional Drainage Facility (RDF) in a detention basin comprising the linear open space located to the north of the subject lands, along the route of the minor watercourse. A swale in the middle of the detention basin acts as a

low-flow and a drain-down channel to ensure adequate drainage of the basin following rainfall events. This RDF has been designed to accommodate run off from development of the Hacketstown lands. i.e this SHD, Ballygossan Phase 1 and 2 and the AI works. The RDF has been partially constructed to service the existing Ballygossan Phase 1 development. The surface water management masterplan concludes that the RDF is to be extended to follow the course of the minor watercourse, up to the western boundary of the lands in order to service all of the Hacketstown lands.

Figure 3: Partially Constructed RDF

A headwall fitted with a trash screen and manhole fitted with a vortex flow control device has been installed to the outfall of the RDF.

During the planning application (ref. F11A/0309) for the adjacent Ballygossan Phase 1 development, the surface water drainage along the Golf Links Road was improved and upgraded. The improvement works included the provision of road gullies and piped drainage discharging to the small watercourse east of the subject site. OCSC assessed the performance of the improved roads drainage system for both the 30- and 100-year return period storm events within their Engineering Services Report submitted as part of the aforementioned planning application. The report confirmed that no flooding will occur during these storm events.

3.2 Proposed Services

In order to facilitate the surface water run off generated by the future development of the Hacketstown Lands (noted above), as well suitably intercept, treat and attenuate surface water in accordance with the relevant guidelines and legislation, partial provision of surface water networks and connections to facilitate this development, an Advanced Infrastructure Works application (AI) was recently submitted

under planning reference number F21A/0287. ABP Ref. ABP-312189-21. This includes the complete construction of the Regional Drainage Facility (RDF).

Surface water management for the proposed development is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'. CIRIA Design Manuals C753, C697 and C609 have also been used to design the surface water drainage system within the site.

The GDSDS guidelines require the following 4 main criteria to be provided by the development's surface water design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage and treatment of run-off within the SuDS features e.g. permeable paving, tree pits, swales and detention basins.
- Criterion 2: River Regime Protection satisfied by attenuating run-off with flow control device prior to discharge to the outfall.
- Criterion 3: Level of Service (flooding) for the site satisfied by the site being outside the 1000 year coastal and fluvial flood levels. Pluvial flood risk addressed by development designed to accommodate a 100-year storm as per GDSDS. Planned flood routing for storms greater than 100-year level considered in design and development run-off contained within site.
- Criterion 4: River flood protection attenuation provided within the SuDS features e.g. permeable paving construction, swales, tree pits and detention basin.

3.3 Sustainable Drainage Systems (SuDS)

The AI (under planning reference F21A/0287) included for the provision of the complete construction of the Regional Drainage Facility (RDF), previously discussed and further described and elaborated on below, as well as all surface water infrastructure required to facilitate this proposed development and its connection to the existing surface water infrastructure. As per the OCSC Surface Water Management Report submitted as part of the previous planning application (ref. F11A/0309) for Ballygossan Phase 1, the proposal to extend the RDF to follow the minor watercourse, up to the western boundary of the lands, in order to service all of the Hacketstown lands was included as part of the AI submission.

This RDF comprising swale, interception storage and detention basin is currently servicing the surface water runoff from the existing Ballygossan Phase 1 development.

In addition to the RDF, it is proposed to use a sustainable urban drainage systems (SuDS) approach to stormwater management throughout the site, the overall strategy aims to provide an effective system to mitigate the adverse effects of urban stormwater runoff on the environment by reducing runoff rates, volumes and frequency, reducing pollutant concentrations in stormwater, contributing to amenity, aesthetics and biodiversity enhancement and allow for the maximum collection of rainwater for re-use

where possible. In addition, SuDS features aim to replicate the natural characteristics of rainfall runoff for any site by providing control of run-off at source and this has been achieved by the current proposals.

SuDS are a requirement of 'The Greater Dublin Strategic Drainage Study' and are recommended under the 2009 guidelines, 'The Planning System and Flood Risk Management'.

There are a number of SuDS features proposed which have been designed in accordance with CIRIA documents C753, C697 and C609 as follows:

- Filter Strips: Wide, gently sloping areas of grass which treat runoff from adjacent impermeable areas and roofs, at source, running over its surface. Filter strips also have an attenuating effect on runoff and can allow some infiltration to the ground where the subgrade is suitable. These are located adjacent to hard-standing areas and swales.
- Swales (wet): Broad, shallow drainage channels covered in grass which can treat, convey and attenuate runoff, at source, and can infiltrate to the ground where the subgrade is suitable.
 Swales also can promote biodiversity. These are located adjacent to roads and shared surfaces
- Filter Drains: Trenches filled with permeable stone material and a perforated collection pipe at the invert with an optional permeable 'sandy' topsoil at surface. These can treat, convey and attenuate runoff, at source, and can infiltrate to the ground where the subgrade is suitable. These systems will allow some form of storage for small rainfall events and can result in water evaporation and adsorption in small quantities, therefore there will be less runoff from these areas in small rainfall events thus mimicking the natural response for this catchment. These will be located in the rear gardens of each unit and will result in an improvement in the quality of surface water draining from roofs of houses and paved areas in rear gardens and will also allow groundwater to recharge to its natural state.
- Tree Pits: Trees can be planted within a range of infiltration SuDS components to improve their performance, as root growth and decomposition increase soil infiltration capacity. Alternatively, they can be used as standalone within soil-filled tree pits, tree planters or structural soils, collecting and storing runoff and providing treatment via filtration and phytoremediation. Tree pits and planters will be designed to collect and attenuate runoff by providing additional storage within the underlying structure. The soils around trees can also be used to filter out pollutants from runoff directly. Tree pits are proposed to be included adjacent to car parks in required green space provision to treat and control runoff, while at the same time providing amenity value to car park users and adjacent pedestrian, commercial and residential zones.
- Petrol Interceptor: A proprietary oil/water separator which prevents hazardous chemical and petroleum products from entering watercourses and public sewers. This is proposed at the outfall from the site and has been included as part of the previously submitted AI (under planning reference F21A/0287).
- Permeable Pavers: Porous surfacing (paving block or open graded material) which can treat rainwater, at source, and allow infiltration through to an underlying porous subbase where water

can be stored within the voids of the subbase before being slowly released to the drainage collection system through natural flow via the porous medium. Partial infiltration systems are proposed to be used as existing subgrade (ground) is not capable of absorbing all the water through infiltration. This type of permeable paving system includes a permeable geotextile at its base as well as an outlet to the surface water system. These systems will allow some form of storage for small rainfall events and will result in infiltration, water evaporation and adsorption in small quantities, therefore there will be less runoff from these areas in small rainfall events thus mimicking the natural response for this catchment. As well as reducing the amount of runoff from the surface, permeable paving will slow down the rate of runoff from the pavement in extreme rainfall events contributing to attenuation flows. In addition, permeable paving will increase the quality of water which is intercepted by the system through filtration, biodegradation, pollutant adsorption and settlement and retention of solids, also the reduction in peak flows to the outfall will enhance settlement and biodegradation of pollutants. It is proposed to use these systems in private driveways and surface water storage within these systems will be further mobilised by providing a 100mm diameter pipe at outlet to the site drainage system. This pipe outlet will restrict flow to its capacity of 7.1 l/s (Ks=0.15 and gradient at 1 in 100) thereby reducing the runoff rate from the permeable paving even further.

Refer to Appendix D for the SuDS calculations and SuDS summary.

Refer to drawing number 190170-DBFL-SW-SP-DR-C-1031 for the proposed surface water layout.

Refer to drawing number 190170-DBFL-SW-SP-DR-C-5014 and 5016 for the standard SuDS details.

3.3.1 Long Term Storage

In addition to limiting the runoff rate through attenuation (see below), the GDSDS requires that runoff volume from the site is limited in extreme events. The objective is to match the runoff volume discharged to the downstream receiving watercourse after development to that which occurred prior to development. This volume is calculated by comparing the 100-year 6 hour event for 'pre' and 'post' development and is referred to as "Long-Term Storage".

Where long-term storage is provided, this has a direct effect on the permissible site discharge rate from the site, as explained further forward.

Due to the large extent of development within the site it is not proposed to provide long-term storage, this effects the permissible site discharge and resulting attenuation volumes required.

3.3.2 Site Investigation

A site investigation on the whole of the Hacketstown lands was carried out by Ground Investigations Ireland and concluded in April 2020. The site investigation comprised 26 number trial pits which included infiltration tests in 8 pits, 34 number dynamic probes, 15 number cable percussion boreholes, 6 number rotary core boreholes and 14 number California Bearing Ratio tests.

The topsoil in the investigation locations on the subject site was present to a maximum depth of 0.5m below ground level.

The cohesive deposits were encountered beneath the topsoil and were described as brown sandy gravelly Clay or silty Clay with occasional cobbles and boulders. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits varied across the site but generally increased with depth and was typically soft to depth of 1.7m and 3.4m below ground level overlaying firm, firm to stiff or stiff in the majority of the exploratory holes.

The granular deposits were encountered within the cohesive deposits and were typically described as grey or brown clayey sandy sub rounded to sub angular fine to coarse Gravel with occasional cobbles or gravelly fine to coarse Sand. Based on the SPT N values, the deposits are typically medium dense and become dense with depth although loose deposits were recorded in places.

The site investigation noted groundwater levels to vary between 1m and 1.5m below ground level.

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 15% and 45% generally with fines contents of 30 to 40%.

The Particle Size Distribution tests confirm that generally the granular deposits are well-graded with percentages of sands/gravels and silt/clay typically between 20% and 30% with a gravel/sand content of typically 60% to 75%.

The CBR testing on remoulded samples from the subject site gave results ranging between 2% and 23% and generally undertaken on fill deposits.

Soil infiltration rates were assessed as part of the site investigation, the assessment was undertaken by excavating trial pits based on the requirements of BRE Digest 365 and CIRIA SuDS Manual C753. The FSR (Winter Rain Acceptance) SOIL value determined was used to calculate the pre-development characteristics of the in-situ soil and the corresponding greenfield run-off of the site, mentioned previously.

The infiltration tests were used to determine the infiltration rate applicable to SuDS features for the calculation of interception storage (see 3.3.6 further forward). An infiltration rate of 29.52 mm/hr were calculated for the soakaway location TPI16, on the subject site. For all other soakaway locations, the infiltration rate could not be calculated due to the water level drop being too slow. It is therefore recommended to allow for partial infiltration design on all SuDS features.

Refer to the site investigation report by Ground Investigations Ireland included as part of this planning application under separate cover.

3.3.3 Permissible Site Discharge

According to the GDSDS, the method used for determining peak flow rates for small greenfield catchments is the UK 'Institute of Hydrology Report 124, Flood Estimation for Small Catchments'. This method calculates QBAR_{rural} which is the mean annual flood flow from a rural catchment.

Where long-term storage can be provided or is not necessary, surface water can be discharged at a higher value than QBAR_{rural}, this discharge rate (QBAR_{growth}) is dependent on the design return period and the corresponding growth factor from the GDSDS Table 6.6. However, if long-term storage cannot be provided on-site the discharge rate from the site should be kept to QBAR_{rural} or 2 l/s/ha, which is the case for this development.

The IH124 method calculates QBAR_{rural} which is the mean annual flood flow from a rural catchment. As the subject site area is less than 50 hectares, the calculated QBAR is to be linearly interpolated from the calculated value to produce a reduced allowable outflow based on the actual site area, as per GDSDS section 6.6.1.

QBAR_{rural} = 0.00108 x (Area)^{0.89}(SAAR)^{1.17}(SOIL)^{2.17}

where:-

QBAR_{rural} = Mean Annual Flood (m3/s) Area = Catchment Area (km2) SAAR = Standard Average Annual Rainfall (mm) SOIL = SOIL index from Flood Studies Report

Using data received from Met Eireann for Irish Grid co-ordinates E 324000, N 259000 (site co-ordinates are: E 324991, N 259352), the SAAR is determined as 735mm.

The soil value can be determined from the Flood Studies Report - Winter Rainfall Acceptance Maps (WRAP). A more accurate approach is to use the 'The Classification of Soils from Winter Rainfall Acceptance Rate, Flood Studies Report Table 4.5' to determine soil type and determine the soil value from from Table 6.7 from the GDSD. The latter method is adopted for this site.

Permissible site discharge for the site has been determined as follows:

Total Site Area used for calculations = 6.94 ha Actual Catchment Area used for calculations = 3.14 ha SAAR = 735mm SOIL Value= 0.40 (for soil type 3 from Table 6.7 from the GDSD)

Therefore the permissible site discharge for the development (QBARrural) is 25 l/s. The Permissible site discharge as calculated for the whole of the Hacketstown Lands (as described above) is 45 l/s. The existing flow control device, installed as part of the Ballygossan Phase 1 development, is set at this discharge rate.

Refer to Appendix E for the Permissible Site Discharge calculations.

3.3.4 Surface Water Runoff Coefficients

As a large proportion of runoff is routed through SuDS features these will have an attenuating effect which reduce the rate of stormwater runoff for every rainfall event. Also, SuDS features would reduce the runoff volume through evaporation, transpiration, infiltration and depression storage of the water within each system.

Runoff coefficients have been agreed with Fingal County Council. These coefficients have been utilised for this site and have been applied as follows:

Roofs - Type 1 (Draining to traditional gullies) = 1.0 Roofs - Type 2 (Draining to SuDS features) = 0.70 Paved Garden Areas Hardstanding =1.0 Roads and Footpaths - Type 1 (Draining to traditional gullies) = 1.00 Roads and Footpaths - Type 2 (Draining to SuDS features) = 0.75 Permeable Paving = 0.50 Bioretention Areas - Type 1 (Filter Drains) = 0.70 Bioretention Areas - Type 2 (Tree Pits and Swales) = 0.70 Public Open Space - Considered to drain to Surface Water Network = 0.30 Public Open Space - Considered to not drain to Surface Water Network = 0.30

3.3.5 Regional Drainage Facility Design

GDSDS requires flood waters for a 100-year return period to be managed on-site, therefore this return period is adopted for attenuation calculations.

O'Connor Sutton Cronin Multidisciplinary Consulting Engineers (OCSC) was previously involved with the planning application (ref. F11A/0309) for the adjacent Ballygossan Phase 1. The OCSC Surface Water Management report confirmed the provision of a Regional Drainage Facility (RDF), comprising swale, interception storage and detention basin in the linear open space on the northern boundary, designed to accommodate run off from development of the whole of the Hacketstown Lands (as noted above).

As mentioned previously in this report, this RDF will be fully completed/constructed as part of the Advanced Infrastructure works submitted under planning reference F21A/0287.

An ecological corridor will be provided on both sides of the swale. This corridor will be at least 10m wide as required by Fingal County Council.

The outlet from the existing portion of RDF already constructed and operational for the Ballygossan Phase 1 development is 450mm above the invert level of the swale. This allows for the interception and retention of small rainfall events and the first flush runoff of larger events. The swale thus provides interception storage as discussed in section 3.3.6 of this report.

This RDF can be described simply as a swale with a high-level outflow, hence a 'mini-retention basin', in accordance with the GDSDS.

The RDF swale has been designed as a wet swale (Type 3 to CIRIA C697). CIRIA C697, Section 104, states that *"there is no minimum [longitudinal] slope requirement for wet swales"*. The flat slope proposed will encourage infiltration along the full length of the swale by ensuring an even distribution of surface water. Local minor variations in invert level will not adversely impede the functioning of the swale and would encourage variation in flora and fauna by providing small pools. The base of the swale will be seeded with native wetland species to the Landscape Architect's specification.

CIRIA C697, Section 10.4, requires that the wet swale design follow safety-design guidance for ponds and wetlands (CIRIA C697 Chapter 17). The proposed wet swale is considered as an aquatic bench with normal depth of water of 450mm in accordance with CIRIA 697. As there will be no deep water (permanent pool), the side slopes of the swale will be at a maximum of 1 in 3 in accordance with Section 17.4 of CIRIA C697. The ground immediately adjacent to the swale will provide a safety bench meeting the requirements of CIRIA C697.

The outlet from the existing portion of RDF already constructed and operational is via a pipe to a flow control manhole fitted with a vortex flow control device. The headwall to the pipe has been fitted with a trash screen in accordance with the specifications of the Greater Dublin Region code of Practice for Drainage Works.

During extreme rainfall storm events, discharge from the site will be limited to greenfield runoff rates. Attenuation storage volume for the 100-year return period storm event has been provided in the swale and adjacent corridor of open space. The open space will therefore function as a detention basin, filling to a maximum depth of 800mm as a result of the 100-year return period storm event. An overflow facility has been provided at a height 100mm above the maximum design water level. All buildings within the development will be at least 500mm above the maximum design water level.

As required under the GDSDS, a climate change allowance of 20% has been applied to the surface water drainage design.

This surface water system has been hydraulically modelled in MICRODRAINAGE to ensure that the overall discharge at the end of the hydraulic system (i.e. the outlets to the Regional Drainage Facility and subsequent surface water network) is at, or below, the greenfield rate that discharges to the stream, as mentioned in section 3.3.3. A MICRODRAINAGE simulation model has been created for the entire site which includes the RDF.

The MICRODRAINAGE simulation uses the Wallingford Procedure, time/area full hydrograph methodology, including energy and momentum equations for dynamic analysis of surface water networks. The site drainage network is modelled as one system where all flows, capacities, water levels, surcharged manholes etc are determined throughout the network for each critical storm duration. Therefore, the final combined discharge rate to the stream from the outlet will be kept at (or below) the total permissible discharge rate defined above.

Maximum rainfall data from Extreme Rainfall Return Period values produced by Met Eireann was used to input into MICRODRAINAGE to determine maximum flood volumes. Rainfall data for the site was

sourced from an Annual Average Rainfall (AAR) Grid (1981-2010) and a Depth Duration Frequency model produced by Met Éireann (Available from: http://www.met.ie/climate/products03.asp). This data was input into MICRODRAINAGE to determine the maximum flood volume for the 1 in 100-year rainfall event.

SAAR	=	735 mm
Ratio M560/M52d	=	0.272
M560	=	15.20 mm

The volume of attenuation required within the RDF on the northern boundary of the site, to service the Hacketstown Lands (as shown below in figure 5) in its entirety is 2550 m3.

The RDF design provides for an attenuation volume of 4483 m³, which is far greater than the calculated requirement.

The Hacketstown Lands is effectively divided into 3 individual developments; Ballygossan Phase 1 development which is completed, Ballygossan Phase 2 development by others and the Hacketstown LDA Lands, the subject site. Figure 4 below illustrates the 3 individual developments on the Hacketstown Lands.

Figure 4: Hacketstown Lands Developments

The attenuation volume required for each of the portions that make up the Hacketstown Lands are summarised in Table 1.

Table 1: Attenuation	Volumo	for Unckatchown	Lande	
TADIE 1. ALLEITUALIUIT	volume	IUI HALKELSLUWII	Lailus	ILAPI

Portion/Site	Attenuation Volume Required (m ³)
Ballygossan – Phase 1	1180
Ballygossan – Phase 2	370
Hacketstown LDA Lands	1000

It should be noted that attenuation volumes required are based on the results of the MICRODRAINAGE hydraulic simulation summary of Critical Results by Maximum Level. Hydrobrake maximum head and discharges are based on results of MICRODRAINAGE hydraulic simulation summary of Critical Results by Maximum Outflow as designed by OCSC during the construction of the Ballygossan Phase 1 Development.

A minimum freeboard of 500mm has been provided above the 1 in 100-year flood levels to all building finished floor levels.

Refer to Appendix D for the SuDS calculations and SuDS summary.

Refer to drawing number 190170-DBFL-SW-SP-DR-C-1031 for the proposed surface water layout.

Refer to drawing numbers 190170-DBFL-SW-SP-DR-C-5011 to 5016 for the standard surface water details.

3.3.6 Interception Volume

The GDSDS requires that no run-off should directly pass to the receiving watercourse for rainfall depths of up to 5mm, therefore interception should be provided at source where practicable. The volume of interception required is based on 5mm of rainfall depth from 80% of the runoff from impermeable areas as defined in the GDSDS (Appendix E section E2.1.1).

The interception volume attributable to each SuDS feature (swales, regional drainage facility etc.) consists of the volume of water that can infiltrate to the ground, what will evaporate into the atmosphere and what can transpirate through plants and vegetation. Additionally, there will some losses of water due to absorption and wetting of stone and soil media.

Not all SuDS features will be able to achieve infiltration, evaporation, transpiration and losses due to absorption/wetting. The limits for each SuDS feature type are considered when calculating interception volumes.

The interception storage attributable to the losses in stone and soil media, such as the stone media used in filter drains was not included in the calculations.

The total interception volume required (as calculated) for the site is 51.89 m³. The volume provided for the site by means of swales, tree pits and bioretention areas, permeable paving, filter drains and the Regional Drainage Facility 1309.9 m³.

The volume provided for within the site by means of swales, tree pits and bioretention areas, permeable paving and filter drains, <u>excluding</u> the Regional Drainage Facility, is 964.4 m³ which is still more than the required interception volume as calculated above.

Refer to Appendix F for the Interception Volume Calculations.

Refer to drawing number 190170-DBFL-SW-SP-DR-C-1031 for the proposed surface water layout.

3.3.7 Treatment Volume

The GDSDS requires that a "treatment volume" (Vt) be provided in order to prevent any pollutants or sediments discharging into river systems, additionally a 'treatment train' stormwater runoff management system is required. According to CIRIA document C697 the following treatment train approach is necessary:

Roofs - 1 Treatment Stage

Road Areas – 2 Treatment Stages

Paved Areas excluding Roads - 1 Treatment Stage

The treatment volume is based on treatment of 15mm of rainfall depth from 80% of the runoff from impermeable areas as defined in the GDSDS (Appendix E section E2.1.2).

All run-off areas will pass through the required number of treatment stages prior to discharging to the downstream outfall.

The total treatment volume required (as calculated) for the site is 155.68 m³. The volume provided by means of swales, tree pits and bioretention areas, permeable paving, filter drains and the Regional Drainage Facility 2290.4 m³.

The volume provided for within the site by means of swales, tree pits and bioretention areas, permeable paving and filter drains, <u>excluding</u> the Regional Drainage Facility, is 461.8m³ which is still more than the required treatment volume as calculated above.

Refer to Appendix F for the Treatment Volumes Calculations.

Refer to drawing number 190170-DBFL-SW-SP-DR-C-1011 for the proposed surface water layout.

3.3.8 Surface Water Sewers

Surface water from the proposed development will be discharged after attenuation, within the Regional Drainage Facility, to the existing surface water network to the east of the Hacketstown Lands via the headwall structure and outlet constructed as part of the Ballygossan Phase 1 development.

Surface water sewers are designed in MICRODRAINAGE using the Modified Rational Method. The return period for sizing pipes is based on the following;

- Department of Environment Recommendations for Site Development Works for Housing Areas (1998), Table 3.1;
- GDSDS Regional Drainage Policies Volume 2 New Development (2005), Section 6.5;
- IS EN 752:2008 Drain and Sewer Systems Outside Buildings, Table 2;
- Building Regulations (2005) Section H Drainage and Wastewater Disposal, Section 1.5.7.

The surface water network was assessed for the 5, 30- and 100-year return period where no flooding from manholes was encountered. The surface water network has been designed for the 5-year return period and assessed for the critical storm to minimise the risk of flooding.

The following parameters applied:

Return period	5 year
Time of entry	4 minutes
Pipe Ks	0.6mm (concrete); 0.15mm (uPVC)
Minimum velocity	0.75 m/s
Maximum velocity	3.0 m/s

Effective runoff coefficients for each pipe catchment have been determined based on the runoff characteristics for each surface contributing to flows within the catchment.

The minimum pipe diameter for public surface water sewers is 225mm.

Values for roughness of uPVC pipes were obtained from Wallingford "Tables for the Hydraulic Design of Pipes, Sewers and Channels" and Wavinsewer systems catalogue.

Refer to Appendix G for the Surface Water Network Calculations.

Refer to Appendix H for the Surface Water Critical Storm Calculations.

Refer to drawing number 190170-DBFL-SW-SP-DR-C-1011 for the proposed surface water layout.

4 Watermains

4.1 Existing Services

There is an existing 1-inch diameter galvanised steel watermain located in the Golf Links Road. Irish Water records indicate this watermain terminates along the eastern boundary of the site. The records also show an existing 100mm dia uPVC watermain located along the southern boundary of the subject site, terminating in close proximity to the second proposed entrance to the proposed development.

The Ballygossan Phase1 is connected via a 150mm diameter uPVC pipeline to an existing 150mm dia uPVC watermain at the junction of Shenick Road and Miller's Lane.

During the planning application (ref. F11A/0309) for Ballygossan Phase 1, Fingal County Council confirmed a working pressure of 3.7 bar in the aforementioned watermain.

Please refer to Appendix A for the Existing Irish Water Services Layout.

4.2 **Proposed Services**

During the construction of the adjacent Ballygossan Phase 1 development, a 150mm diameter watermain was installed close to the boundary of the subject site to accommodate future connection.

In order to facilitate the water connection for the development of the subject site, partial provision of water networks was included as part of the AI approved development made under planning reference number F21A/0287.

The subject development will utilise this connection as a watermain supply.

A pre-connection enquiry was made to Irish Water to confirm there is adequate capacity in the public network to accommodate the proposed SHD (Ref no. 20001995). Irish Water has confirmed that the proposed water connection is feasible without upgrade. The number of residential units proposed within the development has since been reduced, from the 380 units applied for, to 345 units.

The proposed designs for the water supply have been issued to Irish Water's Quality Assurance Team for approval as is required by An Bord Pleanala as part of the Strategic Housing Development process. Irish Water has reviewed the design submission and has confirmed by issue of a 'Statement of Design Acceptance' that the designs are in accordance with the Irish Water Quality Assurance requirements and code of practice.

150mm and 100mm diameter watermains and new fire hydrants will be provided throughout the site. The estimated peak demand from the development will be 9.28 l/s with the average daily demand being 1.63 l/s.

A bulk water meter will be provided at the connection to the site. The supply arrangements will be carried out to the requirements of Irish Water.

Please refer to Appendix B for the Irish Water Confirmation of Feasibility and Statement of Design acceptance letters.

Refer to Appendix H for the Water Demand Calculations.

Refer to drawing number 190170-DBFL-WM-SP-DR-C-1031 for the proposed water main layout.

5 Flood Risk

The Site Specific Flood Risk Assessment 190170-DBFL-XX-XX-RP-C-002 has been included with this planning application under separate cover.

6 Traffic and Transportation

The Mobility Management Plan 190170-DBFL-TR-SP-RP-C-002 MMP has been included with this planning application under separate cover.

The DMURS Compliance Statement 190170-DBFL-TR-XX-RP-C-003 has been included with this planning application under separate cover.

The Traffic and Transport Assessment 190170-DBFL-TR-SP-RP-C-005 has been included with this planning application under separate cover.

7 Items Raised by Fingal at Pre-planning Stage

The items below, raised during the pre-planning stage by Fingal County Council Water Services Department (report reference PPSHD/008/20) were discussed in meetings and correspondence between DBFL and Fingal County Council and addressed as follows:

Recommendation 12:

Address the issues raised in the report of Water Services section.

Foul Sewer:

1. Prior to lodgement of the SHD application, the applicant is required to review the submission with IW and to receive a Statement of Design Acceptance.

Response:

The Foul Sewer design was submitted to Irish Water, and a Statement of Design acceptance received which confirms the design to be in accordance with the Irish Water Wastewater Code of Practice, Standard Details and Quality Assurance Requirements. The Statement of Design acceptance has been included within Appendix B of this report.

Water Supply:

1. Prior to the submission of the full SHD application to ABP, the applicant is required to review the submission with IW and to receive a Statement of Design Acceptance.

Response:

Similarly to the Foul Sewer discussed above, the Water Supply design was submitted to Irish Water, and a Statement of Design acceptance received which confirms the design to be in accordance with the Irish Water, Water Code of Practice, Standard Details and Quality Assurance Requirements. The Statement of Design acceptance has been included within Appendix B of this report.

Surface Water:

1. In accordance with FCC's de-culverting policy, the potential for substituting the proposed 450mm ND outfall pipe to the west with a swale.

Response:

DBFL have reviewed the possibility of providing a swale at the proposed location along with the landscape architects. A swale would however not suit the landscaping proposals and design intent within this open space area.

2. Details of the headwall structures and the proposed 1200mm Nd culvert between western and eastern parts of the RDF.

Response:

Please refer to DBFL drawing 190170-DBFL-SW-SP-DR-C-5016 for cross-section through the new Regional Drainage Facility, illustrating the link between the western and eastern parts. Please refer to DBFL drawing 190170-DBFL-SW-SP-DR-C-5014 for the typical surface water headwall details. These details have been approved under planning ref F21A/ 0287.

3. Location in terms of the light liquid interceptors in terms of vehicular access for routine maintenance, in consultation with FCC Parks and Operations.

Response:

The footpath provision, levels and grades within the open space area, where the light liquid interceptors will be located, are such that they are accessible by vehicle should they require routine maintenance.

4. Flow Control device location

Response:

The Flow Control Device is located at the eastern boundary of the partially constructed Regional Drainage Facility and was installed as part of the Ballygossan Phase 1 development. The device is set at 45 l/s and will service all of the Hacketstown Lands (as noted in this report).

5. Clarification on how the water levels within the RDF will be managed. The proposal in its current format indicates two linked basins with different invert and water levels, but with identical water depths.

Response:

Please refer to DBFL drawing 190170-DBFL-SW-SP-DR-C-5016 for cross section details through the new Regional Drainage Facility, illustrating the link between the western and eastern parts. This cross section illustrates the invert and water levels, addressing this enquiry. The RDF proposals have been agreed under AI application, planning ref F21A/0287.

8 Specific Information Requested by An Bord Pleanala

The items below are items raised during the pre-planning stage by An Bord Pleanala (case reference ABP-308478-20) that are related to the civil services. The responses to these items are summarised below and have been included within this report under the relevant headings and sections.

<u>Item 15:</u>

Address each of the 15 no. recommendations outlined in the Planning Authority opinion.

Response:

The recommendations outlined in the Planning Authority opinion has been addressed accordingly under heading 7 in this report.

APPENDIX A

Existing Services

9/30/2019, 5:12:48 PM

Legend

Stormwater Gravity Mains (Irish Water Owned)

Surface

Stormwater Gravity Mains (Non-Irish Water Owned)

- Surface

Storm Manholes

- Cascade
- ഋ Catchpit
- , **4** ., Hatchbox

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated. © Irish Water

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

APPENDIX B

Irish Water Confirmation of Feasibility and Statement of Design Acceptance

Ben Mong DBFL Ormond House Upper Ormond Quay Dublin 7 D07W704

2 April 2020

Dear Ben Mong,

Re: Connection Reference No CDS20001995 pre-connection enquiry -Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 380 domestic units and 1 no, crèche unit at Golf Links Road, Hacketstown, Skerries, Co. Dublin

Irish Water has reviewed your pre-connection enquiry in relation to a water and wastewater connection at Golf Links Road, Hacketstown, Skerries, Co Dublin.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

Water:

New connection to the existing network is feasible without upgrade (through the 160 mm third party watermain as proposed).

If the connection through the third party infrastructure is not possible, approx. 450 m of 150 mm ID new main to replace the existing 3" Cast Iron and 25.4 mm Galvanised Steel watermain is required, as shown by red dashed-line in the figure below. Irish Water currently does not have any plans to extend its network in this area. Should you wish to progress with the connection you will be required to fund this network extension.

This Confirmation of Feasibility to connect to the Irish Water infrastructure also does not extend to your fire flow requirements. Please note that Irish Water cannot guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you may need to provide adequate fire storage capacity within your development.

In order to determine the potential flow that could be delivered during normal operational conditions, an onsite assessment of the existing network is required.

Wastewater:

New connection to the existing network is feasible without upgrade.

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

GN

W-HP-

The proposed water and wastewater connections for this development connect to the Irish Water network via infrastructure that has not been taken in charge by Irish Water (Third Party Infrastructure). Please be advised that at connection application stage and prior to the commencement of any Self-Lay Works, you have to:

- identify and procure transfer to Irish Water of the arterial water and wastewater Infrastructure within the Third Party Infrastructure;
- demonstrate that the arterial infrastructure are in compliance with requirements of Irish Water Code of Practice and Standard Details and in adequate condition and capacity to cater for additional load from the Development.

Strategic Housing Development:

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of submitting your full application to An Bord Pleanála for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water and/or wastewater infrastructure should be submitted to Irish Water for assessment. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water for review.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Deirdre Ryan from the design team on 022 54620 or email deiryan@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

M Buyes

Maria O'Dwyer Connections and Developer Services

Ben Mong DBFL Ormond House Upper Ormond Quay Dublin 7 D07W704

16 February 2021

Re: Design Submission for Golf Links Road, Hacketstown, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS20001995

Dear Ben Mong,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Alvaro Garcia Email: agarcia@water.ie

Yours sincerely,

Monne Maeeis

Yvonne Harris Head of Customer Operations

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie
APPENDIX C

Foul Sewerage Calculations

TITLE Proposed Reside	ential Development Ha	ckettstown, Skerries, C	Co Dublin	Job Reference 190170		
SUBJECT Wastewater Hydr	raulic Load -Post Deve	lopment Residential		Calc. Sheet No. 1		LTED
DRAWING NUMBER	N-SP-C-1021	Calculations by RSP		Checked by LMcL	Date 08.0	03.22
Foul Drainage	<u>e</u>					
Housing Units				345	no.	
Dry Weather Flow	w (DWF) ¹			150	litres	s/person/day
Average Occupa	ncy Ratio ²			2.7]pers	son/unit
Total Site Occupa	ancy (i.e. population)			932	pers	Son
Total Daily Waste	ewater Discharge + 10	% Unit Consumption A	Allowance ³	153,698]/day	У
Peak Flow Facto	r ⁴			4.5]	
Foul Sewer Org	anic Loading			0.0	//3	
	Average	Maximum				
BOD (mg/l)	168	422				
SS (mg/l)	163	435				
N (mg/l)	40.6	78.6				
P (mg/l)	7.1	15.5				
COD (mg/l)	389	1000				

File: G:\Documents\\190170-Foul Discharge

TITLE Proposed Reside	ential Development Had	ckettstown, Skerrie	es, Co Dublin	Job Reference 190170	
SUBJECT Wastewater Hyd	raulic Load - Post Deve	elopment Creche		Calc. Sheet No. 2	
DRAWING NUMBER	R W-SP-DR-C-1021	Calculations by RSP		Checked by LMcL	Date 08.03.22
Foul Drainag	<u>e</u>				
Day Staff				10	no.
Dry Weather Flo	w (DWF) ¹			50	litres/person/day
Children				40	no.
Dry Weather Flo	w (DWF) ¹			50	litres/person/day
Total Daily Wast Peak Flow Facto	ewater Discharge + 10 [,]	% Unit Consumptic	on Allowance ²	2,750 6.0]l/day
Post Developm	ent Average Discharg	e		0.032	l/s
Post Developm	ent Peak Discharge ⁴			0.191	l/s
Foul Sewer Org	anic Loading				
	Average	Maximum			
BOD (mg/l)	168	422			
SS (mg/l)	163	435			
N (mg/l)	40.6	78.6			
P (mg/l)	7.1	15.5			
COD (mg/l)	389	1000			

Notes:

- 1. Dry Weather Flow (DWF) is 50 litres/person/day for Staff and Patrons taken from Irish Water "Code of Practice for Wasterwater Infrastructure".
- 2. The unit consumption allowance is 10% in accordance with the Irish Water "Code of Practice for Wastewater Infrastructure".
- 3. The Peak Flow factor is taken from Irish Water "Code of Practice for Wasterwater Infrastructure" Appendix C Section 1.2.7
- 4. The peak discharge is equal to the Total Wastewater Discharge multiplied by the peak flow factor, expressed in litres/second.
- 5. The average concentrations of wastewater parameters taken from EPA "Wastewater Treatment Manuals, Treatment Systems for Small Communities, Business, Leisure Centres and Hotels".
- 6. Assumed Maximum concentration is equal to the average concentration plus 2 times the standard deviation (for the 95%ile) taken from EPA "Wastewater Treatment Manuals, Treatment Systems for Small Communities, Business, Leisure Centres and Hotels".

File: G:\Documents\\190170-Foul Discharge

DBFL Co	nsulti	ng Eng	gineer	îs								Pag	ge O
Ormond 1	House												
Upper O	rmond (Quay											
Dublin	7		1.0			<u> </u>						M	icro
Date 01	/02/202	22 15	:16	1 🗖 0	D	esigr	ied by	parl	cesr			Dr	ainade
File 19	0170-F	SulNet	twork-	-17.0	. C	hecke	ed by	0 1					
Innovyz	9				N	etwoi	rk 201	9.1					
				FO	UL S	EWER	AGE DE	SIGN					
				Desi	gn C	rite	ria fo	or FS	_1				
			Pipe	Sizes S	STAND.	ARD M	anhole	Sizes	STA	NDARD			
	Industr	ial Fl	ow (1/:	s/ha)	0.00		Add	l Flow	/ C	limate	Chang	e (%)	0
Inc	lustrial	Peak	Flow Fa	actor	0.00		Μ	linimu	m Ba	ckdrop	Heigh	t (m) 0	.000
	Ċ	alcula Frequ	ency Fa	etnod El actor	N /52 0.50	Min 1	M Desiqn	laxımu Depth	т ва for	скагор Optimi	неіgn Isatio	τ (m) Ο n (m) Ο	.000
		Domest	ic (1/:	s/ha)	0.00	M	in Vel	for A	uto	Design	only	(m/s)	1.00
I	omestic	Peak	Flow Fa	actor	6.00		Min Sl	ope f	or O	ptimisa	ation	(1:X)	500
				Desi	aned	with	Level	Invert	s				
									-				
]	Networl	k De:	sign	Table	for	FS_	1			
PN	Length	Fall	Slope	Area 1	Units	В	ase	k	HY	D DIA	Secti	ion Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SEC	'T (mm)			Design
F1.000	29.983	0.600	50.0	0.000	21.0		0.0	0.600		o 150	Pipe,	/Conduit	. 🔒
F2.000	28.472	0.949	30.0	0.000	24.0		0.0	0.600		o 150	Pipe,	/Conduit	.
F1.001	21.223	0.212	100.0	0.000	0.0		0.0	0.600		o 150	Pipe,	/Conduit	•
F3.000	69.866	0.466	150.0	0.000	144.0		0.0	0.600		o 225	Pipe,	/Conduit	ð
F1.002	13.504	0.068	200.0	0.000	3.0		0.0	0.600		o 225	Pipe,	/Conduit	.
F1.003	22.219	0.111	200.0	0.000	15.0		0.0	0.600		o 225	Pipe,	/Conduit	. .
F1.004 F1.005	20.774	0.104	200.0	0.000	0.0		0.0	0.600		o 225	Pipe/	/Conduit	· · ··································
F4.000	30.256	0.504	60.0	0.000	18.0		0.0	0.600		o 150	Pipe,	/Conduit	- <mark>0</mark>
				Net	twor]	k Res	ults '	Table	<u>•</u>				
P	N US/	τι Σ	Area	Σ Base	2	Units	Add Fl	OW P.	Dep	P.Vel	Vel	Сар	Flow
	(n	ı) (1	ha) Fi	low (1/s	5)	0112 00	(1/s) (n	m)	(m/s)	(m/s)	(1/s) (1/s)
	000 00	CO1 0	000	0	0	01 0	0	0	2.0	0 00	1 4 2	25 2	0.0
μ.T.	000 23.1	UUT ()	.000	υ.	. U	∠⊥.0	U	. 0	30	0.09	1.43	43.4	4.3
F2.	000 24.	095 0	.000	0.	. 0	24.0	0	.0	28	1.09	1.84	32.6	2.4
F1.	001 23.	001 0	.000	0.	. 0	45.0	0	.0	44	0.77	1.00	17.8	3.4
F3.	000 23.3	260 0	.000	0.	.0	144.0	0	.0	57	0.76	1.07	42.4	6.0
F1.	002 22.	789 0	.000	0.	.0	192.0	0	.0	66	0.71	0.92	36.6	6.9
F1.	003 22.	722 0	.000	0.	.0	207.0	0	.0	67	0.72	0.92	36.6	7.2
F1.	004 22.	610 0	.000	0.	.0	207.0	0	.0	67 67	0.72	0.92	36.6	7.2
F,T.	005 22.	50/ 0	.000	0.	. U	∠∪/.0	0	. U	ю/	0.72	0.92	30.0	1.2

 F4.000
 23.963
 0.000
 0.0
 18.0
 0.0
 31
 0.81
 1.30
 23.0
 2.1

 ©1982-2019
 Innovyze

DBFL Cor	DBFL Consulting Engineers Page 1													
Ormond H	House													
Upper Oi	rmond (Quay												
Dublin 7	7												Mi	
Date 01,	/02/202	22 15	:16			De	sign	ed by	park	esr				
File 190	0170-Fc	oulNet	work-	17.0.		Ch	ecke	d by					DIG	anaye
Innovyze	9					Ne	twor	k 201	9.1					
					_		_		_					
			1	Netwoi	ck D	es	ign	Table	for	FS_1				
PN	Length	Fall	Slope	Area	Unit	s	Ba	se	k	HYD	DTA	Section	Type	Auto
	(m)	(m)	(1:X)	(ha)			Flow	(l/s)	(mm)	SECT	(mm)		-11-	Design
F4 001	13 270	0 221	60 0	0 000	0	0		0 0	0 600	0	150	Pine/Cor	duit	æ
F4.002	42.660	0.533	80.0	0.000	162.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	u "e
F4.003	36.691	0.245	150.0	0.000	0.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	ď
F1.006	71.358	1.151	62.0	0.000	6	0		0.0	0.600	0	225	Pipe/Cor	nduit	æ
F1.007	10.501	0.175	60.0	0.000	0.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	ď
	22 700	0 546	60.0	0 000	10	0		0 0	0 600		150	Dime (Cor		۵
F5.000	32./00	0.540	25 0	0.000	10. 70	. 0		0.0	0.600	0	120	Pipe/Cor		
F5.001	13.937	1 101	25.0 60 0	0.000	/0.	. 0		0.0	0.000	0	225	Pipe/Cor	duit	
13.002	/1.40/	1.1)1	00.0	0.000	0.	. 0		0.0	0.000	0	223	ripe/coi	IGUIC	U
F1.008	10.247	0.516	19.9	0.000	0.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	ď
F1.009	19.413	0.777	25.0	0.000	0.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	ē
F1.010	8.077	0.269	30.0	0.000	0.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	ď
F6.000	24.624	0.410	60.0	0.000	6.	. 0		0.0	0.600	0	150	Pipe/Cor	nduit	A
F6.001	10.051	0.168	60.0	0.000	0.	. 0		0.0	0.600	0	150	Pipe/Cor	nduit	e e e e e e e e e e e e e e e e e e e
F6.002	30.983	0.310	100.0	0.000	24.	. 0		0.0	0.600	0	150	Pipe/Cor	nduit	ð
F7.000	45.777	1.831	25.0	0.000	48.	. 0		0.0	0.600	0	150	Pipe/Cor	nduit	ď
F6.003	77.379	1.208	64.1	0.000	57.	. 0		0.0	0.600	0	225	Pipe/Cor	nduit	ď
				Ne	etwo	rk	Res	ults	Table					
PI	N US/ (m	тг ул () (]	nrea ha) Fl	Base الك Low (1)) β	Ū	nits	Add Fl (1/s	.ow P.I) (m	лер Р. m) (п	vei n/s) (veı Ca (m/s)(1/	ιρ F (s) (]	rom [/s]
	(,					(= <i>,</i> b	, (, (-	,	, ,	, (-	

	(m)	(ha)	Flow	(1/s)		(1/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)	
F4.001	23.459	0.000		0.0	18.0	0.0	31	0.81	1.30	23.0	2.1	
F4.002	23.238	0.000		0.0	180.0	0.0	51	0.98	1.46	58.2	6.7	
F4.003	22.704	0.000		0.0	180.0	0.0	60	0.78	1.07	42.4	6.7	
F1.006	22.390	0.000		0.0	393.0	0.0	58	1.20	1.66	66.2	9.9	
F1.007	21.239	0.000		0.0	393.0	0.0	58	1.22	1.69	67.3	9.9	
F5.000	22.572	0.000		0.0	18.0	0.0	31	0.81	1.30	23.0	2.1	
F5.001	22.026	0.000		0.0	96.0	0.0	33	1.36	2.63	104.5	4.9	
F5.002	21.468	0.000		0.0	96.0	0.0	41	0.99	1.69	67.3	4.9	
F1.008	20.277	0.000		0.0	489.0	0.0	46	1.87	2.95	117.3	11.1	
F1.009	18.786	0.000		0.0	489.0	0.0	49	1.72	2.63	104.5	11.1	
F1.010	18.009	0.000		0.0	489.0	0.0	52	1.61	2.40	95.3	11.1	
F6.000	23.171	0.000		0.0	6.0	0.0	24	0.69	1.30	23.0	1.2	
F6.001	22.761	0.000		0.0	6.0	0.0	24	0.69	1.30	23.0	1.2	
F6.002	22.593	0.000		0.0	30.0	0.0	40	0.73	1.00	17.8	2.7	
F7.000	24.088	0.000		0.0	48.0	0.0	32	1.29	2.02	35.7	3.5	
F6.003	22.257	0.000		0.0	135.0	0.0	45	1.02	1.64	65.1	5.8	
				©198	2-2019	Tnnovvze	2					

DBFL Con	sultir	ıg Eng	ineer	S									Pa	ige 2
Ormond H	iouse													
Upper Or	mond (Quay												· · · · · ·
Dublin 7	02/201	00 1E.	16			Dogion	ad br	~~~~					N	licro
File 190	170-FC	44 ID·	10 work-	17 0		Checke	eu by d by	ра	IIKE	EST				rainage
Innovyze	170-10	Juinet	WOIK	17.0	•	Networ	k 201	9.1						
111110 1 7 2 0							1 201		-					
			N	[etwor]	c De	esign 1	ſable	fo	r F	'S_1				
			- 7	_	• .	_						- .		. .
PN	Length (m)	Fall (m)	(1:X)	Area (ha)	Unit	ts Ba Flow	ase (l/s)	k (m	c m)	HYD SECT	DIA (mm)	Sect	ion Tyj	Design
									-					-
F8.000	59.667	2.983	20.0	0.000	111	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🗬
F8.001	11.120	0.445	25.0	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🔐
F6.004	43.150	1.027	42.0	0.000	27	. 0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🗬
F6.005	60.747	1.593	38.1	0.000	54	. 0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🔐
F6.006	14.403	0.714	20.2	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🔐
F1.011	36.582	1.464	25.0	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 💣
F9.000	16.469	0.274	60.0	0.000	36	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🔒
F9.001	63.174	1.049	60.2	0.000	72	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 💣
F9.002	15.417	0.257	60.0	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🧬
F10.000	52.541	0.876	60.0	0.000	72	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🔒
F10.001	36.672	0.611	60.0	0.000	36	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 💣
F10.002	27.245	0.454	60.0	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🧬
F1.012	11.700	0.234	50.0	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 💣
F1.013	22.684	0.227	99.9	0.000	0	.0	0.0	0.6	500	0	225	Pipe	/Condu:	it 🧬
				Net	two	rk Resi	ults I	ſab	le					
PN	US	/ΤΙ Σ	Area	Σ Base	2	2 Units	Add Fl	OW	P.D	ep P	.Vel	Vel	Сар	Flow
	(1	n) (1	ha) F	low (1/	s)		(1/s)	(m	m) (1	n/s)	(m/s)	(1/s)	(1/s)
F8.0	000 24.	539 0	.000	0	.0	111.0	(0.0		32	1.50	2.94	116.9	5.3
F8.0	001 21.	556 0	.000	0	.0	111.0	(0.0		34	1.39	2.63	104.5	5.3
F6.0	004 21.	049 0	.000	0	.0	273.0	(0.0		48	1.32	2.02	80.5	8.3
F6.0	005 20.	022 0	.000	0	.0	327.0	(0.0		49	1.40	2.13	84.5	9.0
F6.0	006 18.	429 0	.000	0	.0	327.0	(0.0		42	1.75	2.93	116.4	9.0
F1.0	011 17.	715 0	.000	0	.0	816.0	(0.0		56	1.85	2.63	104.5	14.3
F9.0	000 17.	197 0	.000	0	.0	36.0	(0.0		32	0.86	1.69	67.3	3.0
F9.0	001 16.	923 0	.000	0	.0	108.0	(0.0		42	1.01	1.69	67.1	5.2
F9.0	002 15.	874 0	.000	0	.0	108.0	(0.0		42	1.01	1.69	67.3	5.2
F10.0	000 <mark>18</mark> .	241 0	.000	0	.0	72.0	C	0.0		38	0.95	1.69	67.3	4.2
F10.0	001 17.	365 0	.000	0	.0	108.0	(0.0		42	1.01	1.69	67.3	5.2
F'10.(JUZ 16.	/54 0	.000	0	.0	T08.0	(0.0		42	L.UT	1.69	6/.3	5.2
F1.0	012 15.	617 0	.000	0	.0	1032.0	C	0.0		71 :	1.49	1.85	73.7	16.1
F1.0	013 13.	670 0	.000	0	.0	1032.0	(0.0		86 3	1.16	1.31	52.0	16.1
				©	1982	2-2019	Innov	/yz	e					

DBFL Consult	ing	Engir	neers						Page 3
Ormond House	5								
Upper Ormono	l Qua	У			l				
Dublin 7					1				Micco
Date 01/02/2	2022	15:16	5		Designed	d by par	rkesr		
File 190170-	-Foul	Netwo	ork-17	.0	Checked	by			Dialitage
Innovyze					Network	2019.1			1
			PI	PELINE	SCHEDUI	LES for	FS_1		
				Ups	stream M	anhole			
DN	Hyd	Diam	мц	C Levre	1 T Level	D Depth	ML	ми ртам	т.*₩
EN	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm	1)
		. ,		. ,	. ,				
F1.000	0	150	FF14	24.99	5 23.601	1.244	Open Manhole		1200
F2.000	0	150	FF13.1	25.62	6 24.095	1.381	Open Manhole		1200
							-		
F1.001	0	150	FF13	25.18	4 23.001	2.033	Open Manhole		1200
F3,000	0	225	FF12.1	24.68	8 23,260	1,203	Open Manhole		1200
13.000	Ũ	225		21.00	0 23.200	1.205	open namore		1200
F1.002	0	225	FF12	25.29	8 22.789	2.284	Open Manhole		1200
F1.003	0	225	FF11	25.46	8 22.722	2.521	Open Manhole		1200
F1.004	0	225	FF10	25.58	4 22.610	2.749	Open Manhole		1200
F1.005	0	225	FF9	25.56	7 22.507	2.835	Open Manhole		1200
F4.000	0	150	FF8.4	25.00	0 23.963	0.887	Open Manhole		1200
F4 001	0	150	FF8 3	24 69	1 23 459	1 082	Open Manhole		1200
F4 002	0	225	FF8 2	24 52	8 23 238	1 065	Open Manhole		1200
F4.002	0	225	FF0.2	24.52	23.230	1 614	Open Manhole		1200
F4.005	0	225	FF0.1	24.54	5 22.704	1.014	open Mannore		1200
F1.006	0	225	FF8	24.95	6 22.390	2.341	Open Manhole		1200
F1.007	0	225	FF7	23.13	2 21.239	1.668	Open Manhole		1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	29.983	50.0	FF13	25.184	23.001	2.033	Open Manhole	1200
F2.000	28.472	30.0	FF13	25.184	23.146	1.888	Open Manhole	1200
F1.001	21.223	100.0	FF12	25.298	22.789	2.359	Open Manhole	1200
F3.000	69.866	150.0	FF12	25.298	22.794	2.279	Open Manhole	1200
F1.002	13.504	200.0	FF11	25.468	22.722	2.521	Open Manhole	1200
F1.003	22.219	200.0	FF10	25.584	22.610	2.749	Open Manhole	1200
F1.004	20.774	200.0	FF9	25.567	22.507	2.835	Open Manhole	1200
F1.005	23.337	200.0	FF8	24.956	22.390	2.341	Open Manhole	1200
F4.000	30.256	60.0	FF8.3	24.691	23.459	1.082	Open Manhole	1200
F4.001	13.270	60.0	FF8.2	24.528	23.238	1.140	Open Manhole	1200
F4.002	42.660	80.0	FF8.1	24.543	22.704	1.614	Open Manhole	1200
F4.003	36.691	150.0	FF8	24.956	22.460	2.271	Open Manhole	1200
F1.006	71.358	62.0	FF7	23.132	21.239	1.668	Open Manhole	1200
F1.007	10.501	60.0	FF6	22.768	21.064	1.479	Open Manhole	1200
				©1982-	2019 Ir	novyze		

DBFL Consulting Engineers		Page 4
Ormond House		
Upper Ormond Quay		
Dublin 7		Mirro
Date 01/02/2022 15:16	Designed by parkesr	Desinado
File 190170-FoulNetwork-17.0	Checked by	Diamage
Innovyze	Network 2019.1	

PIPELINE SCHEDULES for FS_1

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F5.000	0	150	FF6.3	23.948	22.572	1.226	Open Manhole	1200
F5.001	0	225	FF6.2	23.943	22.026	1.692	Open Manhole	1200
F5.002	0	225	FF6.1	23.672	21.468	1.979	Open Manhole	1200
F1.008	0	225	FF6	22.768	20.277	2.266	Open Manhole	1200
F1.009	0	225	FF5	22.407	18.786	3.396	Open Manhole	1200
F1.010	0	225	FF4	19.823	18.009	1.589	Open Manhole	1200
F6.000	0	150	FF3.7	24.564	23.171	1.243	Open Manhole	1200
F6.001	0	150	FF3.6	23.661	22.761	0.750	Open Manhole	1200
F6.002	0	150	FF3.5	23.823	22.593	1.080	Open Manhole	1200
F7.000	0	150	FF3.4.1	25.628	24.088	1.390	Open Manhole	1200
F6.003	0	225	FF3.4	24.259	22.257	1.777	Open Manhole	1200
F8.000	0	225	FF3.3.2	25.788	24.539	1.024	Open Manhole	1200
F8.001	0	225	FF3.3.1	23.597	21.556	1.816	Open Manhole	1200
F6.004	0	225	FF3.3	23.088	21.049	1.814	Open Manhole	1200
F6.005	0	225	FF3.2	21.297	20.022	1.050	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(111)	(1:1)	Name	(111)	(111)	(111)	connection	(1001)
F5.000	32.788	60.0	FF6.2	23.943	22.026	1.767	Open Manhole	1200
F5.001	13.937	25.0	FF6.1	23.672	21.468	1.979	Open Manhole	1200
F5.002	71.467	60.0	FF6	22.768	20.277	2.266	Open Manhole	1200
F1.008	10.247	19.9	FF5	22.407	19.761	2.421	Open Manhole	1200
F1.009	19.413	25.0	FF4	19.823	18.009	1.589	Open Manhole	1200
F1.010	8.077	30.0	FF3	19.770	17.740	1.805	Open Manhole	1200
F6.000	24.624	60.0	FF3.6	23.661	22.761	0.750	Open Manhole	1200
F6.001	10.051	60.0	FF3.5	23.823	22.593	1.080	Open Manhole	1200
F6.002	30.983	100.0	FF3.4	24.259	22.283	1.826	Open Manhole	1200
F7.000	45.777	25.0	FF3.4	24.259	22.257	1.852	Open Manhole	1200
56 000		C 4 1		02 000	01 040	1 014	o w 1 1	1000
F6.003	//.3/9	64.l	FF3.3	23.088	21.049	1.814	Open Mannole	1200
F8.000	59.667	20.0	FF3.3.1	23.597	21.556	1.816	Open Manhole	1200
F8 001	11 120	25.0	2101011 FF3 3	23 088	21 111	1 752	Open Manhole	1200
10.001	11.120	23.0	115.5	23.000	21,111	1.752	open Mannore	1200
F6.004	43.150	42.0	FF3.2	21.297	20.022	1.050	Open Manhole	1200
F6.005	60.747	38.1	FF3.1	20.398	18.429	1.744	Open Manhole	1200
				©1982-2	2019 Ini	lovyze		

DBFL Consulti	ng E	ngine	eers					Page 5
Ormond House								
Upper Ormond	Quay							
Dublin 7								Mirro
Date 01/02/20)22 1	5:16		I	Designed	by par	kesr	Dcainago
File 190170-F	FoulN	letwoi	ck-17.	0 0	Checked b	ру		brainage
Innovyze				N	Jetwork 2	2019.1		
			PIF	PELINE	SCHEDULE	lS for	FS_1	
				IIng	troom Mo	nhole		
				0251		more		
PN	Hyd	Diam	мн	C.Level	I.Level I	.Depth	МН	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F6.006	0	225	FF3.1	20.398	18.429	1.744	Open Manhole	1200
F1.011	0	225	FF3	19.770	17.715	1.830	Open Manhole	1200
F9.000	о	225	FF2.6	18.596	17.197	1.174	Open Manhole	1200
F9.001	0	225	FF2.5	18.238	16.923	1.090	Open Manhole	1200
F9.002	0	225	FF2.4	18.363	15.874	2.264	Open Manhole	1200
F10.000	o	225	FF2.3	19.641	18.241	1.175	Open Manhole	1200
F10.001	0	225	FF2.2	19.201	17.365	1.611	Open Manhole	1200
F10.002	0	225	FF2.1	18.859	16.754	1.880	Open Manhole	1200
F1 012	0	225	ਸਾਸ2	18 076	15 617	2 234	Open Manhole	1200
F1.013	0	225	FF1	17.765	13.670	3.870	Open Manhole	1200
				Downs	stream M	anhole		
PN T.	ength	Slope	мн	C.Leve	el T.Level	D. Dept	ь мн	MH DTAM., I.*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
F6 006 1	4 402	20 0) 다다	3 10 7	70 17 716	; 1 Q 2	0 Open Manhol	e 1200
F0.000 T	1.103	20.2		5 17.1	· · · · / ⊥ .	, 1.03	o open mannor	LC 1200
F1.011 3	6.582	25.0) FF	2 18.0	76 16.250	1.60	0 Open Manhol	e 1200
F9.000 1	6.469	60.0) FF2	5 18.21	38 16.923	3 1.09	0 Open Manhol	e 1200
F9.001 6	3.174	60.2	2 FF2.	4 18.30	63 15.874	2.26	4 Open Manhol	.e 1200
F9.002 1	5.417	60.0) FF	2 18.0	76 15.617	2.23	4 Open Manhol	.e 1200
	0 E / 1	60 0		2 10 20		1 61	1 Open Markel	1200
F10.000 5	∠.541 6 672	60.U	, rr2.) Fr2	2 19.20 1 18.80	01 17.305 59 16 754) 1.61 I 1.88	0 Open Manhol	e 1200

 F10.002
 27.245
 60.0
 FF2
 18.076
 16.300
 1.551
 Open Manhole
 1200

 F1.012
 11.700
 50.0
 FF1
 17.765
 15.383
 2.157
 Open Manhole
 1200

 F1.013
 22.684
 99.9
 FEX
 F1
 17.318
 13.443
 3.650
 Open Manhole
 1200

Free Flowing Outfall Details for FS_1

Out	fall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
								(m)		
	F1.013	FEX F1		17.318		13.443		0.000	1200	0

©1982-2019 Innovyze

APPENDIX D

SuDS calculations

	Job Reference		
Residential Development, Hackettstown, Skerries, Co. Dublin	190170		
SUBJECT	Calc. Sheet No.		
BIORETENTION DESIGN	1		
DRAWING NUMBER Calculations by	Checked by	Date	
190170-DBFL-SW-SP-DR-C-1011 RSP	LIVICL	14/02/2022	
BIORETENTION AREA			
Surface Area of Bioretention Area (A.)	69.8 m ²		
TREATMENT VOLUME			
$\frac{1}{1}$ Treatment Volume (V)	25.1		
	23.1 m ²		
CATCHMENT AREA			
	2002 5		
Effective Impermeable Area Covered for Treatment (A)	2092.5 m ⁻		
ΙΝΡΙΙΤ ΠΑΤΑ			
$\frac{2}{2}$ Filter Ded Depth (L)	4.000		
Filter Bed Depth (L)	1.200 m		
Coefficient of Permeability of Filter Medium (k)	0.000002 m/s		
³ Average Height of Water above Filter Bed (h)	0.050 m		
⁴ Time Required for Percolation (t)	48.0 hr		
INFILTRATION VOLUME			
Subgrade Infiltration Rate per hour	29.5 mm/hr		
Subgrade Infiltration Rate (f)	0.008 mm/s		
Subgrade Inflitration Volume	83.4 m°		
Notas			
¹ Treatment Volume Vt (m ³) = Impermeable Area (ha) x 15mm x 10 x 80% (GDSDS Set	ection 6.3.1.2.1).		
2 Filter Bed depth typically between 0.9 and 1.5m			
3 h = Half maximum height, where hmax <=2m			
4 Typically between 24 and 48 hours	Table: 1 Coefficient of Permea	bility of Filter Medium	
5 Volume calculated using 6 hour storm event.	Soil Type/Texture	Infiltration Rate (m/s)	
	Source: SUDS Manual Table 2	5-1	
Area of Bioretention Filter Bed = V _T . L	Gravel	0.0003 - 0.03	
	Sand	0.00001 - 0.00005	
k(h+L)t	Loamy Sand	0.0001 - 0.00003	
	Sandy Loam	0.0000001 - 0.00001	
	Loam	0.000001 - 0.00005	
	Chalk	0.0000003 - 0.00001	

Sandy Clay Loam

Silty Clay Loam

Clay

Till

0.000000003 - 0.0000003

0.0000001 - 0.000001

< 0.0000003

0.00000003 - 0.000003

TITLE			Job Reference		
TIACKEISIOWIIS			190170		
SUBJECT FILTER TRENCH DESI	GN		Calc. Sheet No. 1		
				D (
190170-DBFL-SW-SP-D	DR-C-1011	Calculations by RSP	LMCL	Date 14/02/2022	
Pipe Diameter (Ø)			0.150 m		
Average Width (W)			0.600 m		
Average Depth to Invert			0.600 m		
Length (L)			854.2 m		
Clana (C)					
			150 1 111		
Trench Backfill Volds R	tatio (η)		0.30		
Trench Backfill Inflitratio	n Rate per nour		3600.0 mm/nr		
Trench Backfill Infiltratio	n Rate (k)		1.000 mm/s		
Subgrade Infiltration Rat	te per hour		10.0 mm/hr		
Subgrade Infiltration Rat	te (<i>†</i>)		0.003 mm/s		
VOLUME (STORAGE A	ND TREATMENT)				
Filter Trench Storage Vo	olume per metre		0.123 m ³ /m		
Total Filter Trench Sto	rage Volume (V)		105.1 m ³	Provided Treatment Volu	ume
INFILTRATION/ INTER	CEPTION VOLUME				
² Filter Trench Infiltration	per metre		0.002 l/s/m		
Total Filter Trench Infil	Itration Rate (I)		1.424 l/s/m		
³ Total Filter Trench Inf	iltration Volume		30.7 m ³	Provided Interception Vo	blume
FLOW					
Filter Trench Cross-Sec	tional Area (A)		0.24 m ²		
Total Filter Trench Flor	w (Q)		14.434 l/s		
Trench Retention Time)		4.0 hr		
lataa			Table 0		
¹ Trench backfill material has a	a void ratio of approximately 30	%,	Material	Infiltration Rate	(m/hr)
source 'BRE Digest 365'.			Gravel	10 - 1000	
2 Wetted perimeter assuming 8 3 Volume calculated using 6 bc	50% of trench depth, source 'Bl our storm event	RE Digest 365'.	Sand	0.1 - 100	
			Sandy loam	0.05 - 0.5	
			Loam	0.001 - 0.1	05
Table: 1	void Patia n		Silt loam	0.0005 - 0.0	
Clean stone	0.40 - 050		Sandy clay loam	0.001 - 100	1
Uniform gravel	0.30 - 0.40		Silty clay loam	0.00005 - 0.0	005
Graded sand or gravel	0.20 - 0.30		Clay	< 0.0001	
			Till	0.00001 - 0.	01
Total Trench Flow:	ne Flow		Rock	0.00001 - 1	1 /br
where:			Source: Microdrainage	n aramaye systems = 0.001 mm	
A = Cross Sec	ctional Area of Backfill				
k = Trench Ba	ackfill Infiltration Rate		Total Trench Infiltration		
i = Hydraulic	Gradient		= 1/2 . D . L	. <i>f</i>	
Hydraulic gradient has been assum	ned as the trench gradient		where:		
with an additional 250mm fall per 1	00m length.		L = Length		
Fipe Flow calculated using Colebro			f = Subora	de infiltration rate	
			, Casgia		

TITLE Residential Development, Hackettstown, Skerries, Co. Dublin	Job Reference 190170	
SUBJECT Permeable Paving Design	Calc. Sheet No.	LEFL
DRAWING NUMBERCalculations by190170-DBFL-SW-SP-DR-C-1011RSP	Checked by LMCL	Date 14/02/2022
FLAT SITES		
INPUT DATA		
Pavement Area (A)	4135.7 m ²	
Pavement Perimeter (P)	2506.0 m	
Sub-base Depth (d)	0.250 m	
¹ Sub-base Voids Ratio (η)	0.30	
Sub-base Infiltration Rate per hour	1000 mm/hr	
Sub-base Infiltration Rate (k)	0.278 mm/s	
Subgrade Infiltration Rate per hour	29.5 mm/hr	
Subgrade Infiltration Rate (f)	0.008 mm/s	
VOLUME (STORAGE AND TREATMENT)		
Permeable Paving Storage Volume per m ²	0.075 m ³ /m ²	
Total Permeable Paving Storage Volume	310.2 m ³	Provided Treatment Volume
INFILTRATION / INTERCEPTION VOLUME		
Approx. Permeable Paving Infiltration per m ²	0.009 l/s/m ²	
² Total Permeable Paving Infiltration Rate	39.050 l/s	
³ Total Permeable Paving Infiltration Volume	843.5 m ³	Provided Interception Volume
<u>FLOW</u>		
Average Distance between Outlet Drains	6.0 m	Assumed one outlet per house
Flow Velocity through Permeable Paving	0.000024 m/s	
Trench Retention Time	69.9 hr	

TITLE Residential Development, Hackettstown, Skerries, Co	o. Dublin	Job Reference 190170			
SUBJECT Permeable Paving Design		Calc. Sheet No. 1		EFL.	
DRAWING NUMBER 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by LMCL	Date 14/02/2022		

Notes:

¹ Sub-base material has a void ratio of approximately 30%,

source 'BRE Digest 365'.

2 Wetted perimeter assuming 50% of trench depth, source 'BRE Digest 365'.

3 Volume calculated using 6 hour storm event.

4 For Paving on slopes includes infiltration, provide 500mmx500mm trenches at 10m centres along slope with 1000mmx500mm at base of slope.

source 'Formpave - Aquaflow Permeable Paving System'.

Table: 1

Material	void Ratio, η		
Clean stone	0.40 - 0.50		
Uniform gravel	0.30 - 0.40		
Graded sand or gravel 0.20 - 0.30			
Source: The SUDS manual, Published by CIRIA.			

Table: 2

Pavement Type	Effective Depth (m)
Car-Parking	0.40
Footpath	0.20

Effective Depths are provided from source 'Formpave -Aquaflow Permeable Paving System' and may subject to change as per site requirement.

Table: 3	
Material	Infiltration Rate (m/hr)
Gravel	10 - 1000
Sand	0.1 - 100
Loamy sand	0.01 - 1
Sandy loam	0.05 - 0.5
Loam	0.001 - 0.1
Silt loam	0.0005 - 0.005
Chalk	0.001 - 100
Sandy clay loam	0.001 - 0.01
Silty clay loam	0.00005 - 0.005
Clay	< 0.0001
Till	0.00001 - 0.01
Rock	0.00001 - 1
Cutoff point for most infiltration Source: Microdrainage	on drainage systems = 0.001 mm/hr

Total Trench Infiltration: = $1/2 \cdot D \cdot L \cdot f$ where: L = Length D = Depth to Invert f = Subgrade infiltration rate

TITLE Residential Development, Hackettstown, Skerries, Co	. Dublin	Job Reference 190170		
SUBJECT Swale Channel No.1		Calc. Sheet No. 3		
DRAWING NUMBER 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by LMCL	Date 14/02/2022	
INPUT DATA				
Side Slopes		4.0 1 in		
Bottom width (W)		1.00 m		
Depth to Invert (D)		0.15 m		
Length (L)		7.3 m		
Slope (S)		50 1 in		
Manning's Coefficient (n)		0.030		
Subgrade Infiltration Rate per hour		29.520 mm/hr		
Subgrade Infiltration Rate (f)		0.008200000 mm/s		
TREATMENT VOLUME				
Total Plan Area of Swale		16.3 m ²		
¹ Depth of Subgrade Treatment		0.20 m		
Total Swale Treatment Volume (V_T)		3.266 m ³		
STORAGE VOLUME				
Max. Length of Storage within Swale		7.3 m		
Swale Storage Volume per 7m Length		0.55 m ³		
Swale Storage Volume (V)		0.55 m ³		
INFILTRATION/ INTERCEPTION VOLUME				
Total Swale Infiltration Rate		0.07 l/s		
³ Total Swale Infiltration Volume		1.459 m ³		
<u>FLOW</u>				
Maximum Swale Flow at Outlet		255.5 I/s		
Maximum Swale Velocity at Outlet		1.06 m/s		
³ Typical Swale Retention Time		0.002 hr		
Notes: 1 Assume 200mm of topsoil				
² Volume calculated using 6 hour storm event.				
3 Swale retention time depends on outlet control, refer to WINDE	S Model.			
Total Sucle Infiltration - P I f		Table: 1 Matorial	Infiltratio	n Pato (mm/br)
		Gravel	1	0 - 1000
where:		Sand	0	.1 - 100
P = VVetted Perimeter L = Length		Loamy sand Sandy loam	0	0.01 - 1 .05 - 0.5
f = Subgrade infiltration rate		Loam	0.0	001 - 0.1
		Silt loam	0.00	05 - 0.005
Total Swale Flow = $1/n AR^{2/3} S^{1/2}$		Unaik Sandy clay loam	0.0	
		Silty clay loam	0.00	005 - 0.005
where:		Clay	<	0.0001
P = Wetted perimeter		Rock	0.00	0001 - 0.01
R = A/P		Cutoff point for most infiltration	drainage systems = 0.0	001 mm/hr
n = Manning's Coefficient s = Slope		Source: Microdrainage		

TITLE Residential Development, Hackettstown, Skerries, Co	. Dublin	Job Reference 190170		
SUBJECT Swale Channel No.2		Calc. Sheet No.		
DRAWING NUMBER 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by LMCL	Date 14/02/2022	
INPUT DATA				
Side Slopes		4.0 1 in		
Bottom width (W)		<u>1.00</u> m		
Depth to Invert (D)		0.15 m		
Length (L)		18.6 m		
Slope (S)		30 1 in		
Manning's Coefficient (n)		0.030		
Subgrade Infiltration Rate per hour		29.520 mm/hr		
Subgrade Infiltration Rate (f)		0.008200000 mm/s		
TREATMENT VOLUME				
Total Plan Area of Swale		41.6 m ²		
¹ Depth of Subgrade Treatment		0.20 m		
Total Swale Treatment Volume (V_T)		8.321 m ³		
STORAGE VOLUME				
Max. Length of Storage within Swale		4.5 m		
Swale Storage Volume per 5m Length		0.79 m ³		
Swale Storage Volume (V)		3.15 m ³		
INFILTRATION/ INTERCEPTION VOLUME				
Total Swale Infiltration Rate		0.10 l/s		
³ Total Swale Infiltration Volume		2.058 m ³		
<u>FLOW</u>				
Maximum Swale Flow at Outlet		329.8 I/s		
Maximum Swale Velocity at Outlet		1.37 m/s		
³ Typical Swale Retention Time		0.004 hr		
Notes: 1 Assume 200mm of topsoil.				
2 Volume calculated using 6 hour storm event.				
3 Swale retention time depends on outlet control, refer to WINDE	S Model.	T -11- 4		
Total Swale Infiltration – P I f		Table: 1 Material	Infiltratio	n Rate (mm/br)
		Gravel	1	0 - 1000
where:		Sand	0	.1 - 100
P = VVetted Perimeter L = Length		Loamy sand Sandy loam	0	.05 - 0.5
f = Subgrade infiltration rate		Loam	0.	001 - 0.1
		Silt loam	0.00	005 - 0.005
Total Swale Flow = $1/n.AR^{2/3}S^{1/2}$		Sandy clay loam	0.0	001 - 100
		Silty clay loam	0.00	005 - 0.005
where:		Clay	<	0.0001
P = Wetted perimeter		Rock	0.00	00001 - 1
R = A/P		Cutoff point for most infiltration	drainage systems = 0.	001 mm/hr
n = Manning's Coefficient s = Slope		Source: Microdrainage		

TITLE Residential Development, Hackettstown, Skerries, Co	o. Dublin	Job Reference 190170		
SUBJECT Swale Channel No.3		Calc. Sheet No. 6		
DRAWING NUMBER 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by LMCL	Date 14/02/2022	
INPUT DATA				
Side Slopes		4.0 1 in		
Bottom width (W)		<u>1.00</u> m		
Depth to Invert (D)		0.15 m		
Length (L)		<mark>10.5</mark> m		
Slope (S)		30 1 in		
Manning's Coefficient (n)		0.030		
Subgrade Infiltration Rate per hour		29.520 mm/hr		
Subgrade Infiltration Rate (f)		0.008200000 mm/s		
TREATMENT VOLUME				
Total Plan Area of Swale		23.5 m ²		
¹ Depth of Subgrade Treatment		0.20 m		
Total Swale Treatment Volume (V_T)		4.698 m ³		
STORAGE VOLUME				
Max. Length of Storage within Swale		4.5 m		
Swale Storage Volume per 5m Length		0.29 m ³		
Swale Storage Volume (V)		0.58 m ³		
INFILTRATION/ INTERCEPTION VOLUME				
Total Swale Infiltration Rate		0.03 l/s		
³ Total Swale Infiltration Volume		0.646 m ³		
<u>FLOW</u>				
Maximum Swale Flow at Outlet		329.8 I/s		
Maximum Swale Velocity at Outlet		1.37 m/s		
³ Typical Swale Retention Time		0.002 hr		
lotes: 1 Assume 200mm of topsoil.				
² Volume calculated using 6 hour storm event.				
3 Swale retention time depends on outlet control, refer to WINDE	S Model.			
Total Swale Infiltration - P I f		Table: 1 Material	Infiltratio	on Rate (mm/br)
		Gravel	1	0 - 1000
where:		Sand	(0.1 - 100
P = Vreited Perimeter L = Length		Sandy loam	0	0.01 - 1
f = Subgrade infiltration rate		Loam	0.	001 - 0.1
		Silt loam	0.00	005 - 0.005
Total Swale Flow = $1/n.AR^{2/3}S^{1/2}$		Sandv clav loam	0.	001 - 0.01
		Silty clay loam	0.00	005 - 0.005
where:		Clay		< 0.0001
P = Wetted perimeter		Rock	0.00	00001 - 1
R = A/P		Cutoff point for most infiltration	drainage systems = 0.	001 mm/hr
n = Manning's Coefficient s = Slope		Source: Microdrainage		

TITLE Residential Development, Hackettstown, Skerries, Co	. Dublin	Job Reference 190170		
SUBJECT Swale Channel No.4		Calc. Sheet No.		
DRAWING NUMBER 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by LMCL	Date 14/02/2022	
INPUT DATA				
Side Slopes		4.0 1 in		
Bottom width (W)		<u>1.00</u> m		
Depth to Invert (D)		0.15 m		
Length (L)		11.5 m		
Slope (S)		200 1 in		
Manning's Coefficient (n)		0.030		
Subgrade Infiltration Rate per hour		29.520 mm/hr		
Subgrade Infiltration Rate (f)		0.008200000 mm/s		
TREATMENT VOLUME				
Total Plan Area of Swale		25.7 m ²		
¹ Depth of Subgrade Treatment		0.20 m		
Total Swale Treatment Volume (V _T)		5.145 m ³		
STORAGE VOLUME				
Max. Length of Storage within Swale		11.5 m		
Swale Storage Volume per 12m Length		1.02 m ³		
Swale Storage Volume (V)		1.02 m ³		
INFILTRATION/ INTERCEPTION VOLUME				
Total Swale Infiltration Rate		0.12 l/s		
³ Total Swale Infiltration Volume		2.656 m ³		
<u>FLOW</u>				
Maximum Swale Flow at Outlet		127.7 l/s		
Maximum Swale Velocity at Outlet		0.53 m/s		
³ Typical Swale Retention Time		0.006 hr		
Notes: 1 Assume 200mm of topsoil.				
² Volume calculated using 6 hour storm event.				
3 Swale retention time depends on outlet control, refer to WINDE	S Model.	- <i>.</i>		
Total Swale Infiltration - P I f		Table: 1 Material	Infiltratio	n Rate (mm/br)
		Gravel	1	0 - 1000
where:		Sand	0	.1 - 100
P = Vvetted Perimeter L = Length		Loamy sand Sandy loam	0	.05 - 0.5
f = Subgrade infiltration rate		Loam	0.	001 - 0.1
		Silt loam	0.00	005 - 0.005
Total Swale Flow = $1/n.AR^{2/3}S^{1/2}$		Sandy clay loam	0.0	001 - 0.01
		Silty clay loam	0.00	005 - 0.005
where:		Clay Till	<	0.0001
P = Wetted perimeter		Rock	0.0	00001 - 1
R = A/P		Cutoff point for most infiltration	drainage systems = 0.	001 mm/hr
n = ivianning's Coefficient s = Slope		Source: Microdrainage		

TITLE Regidential Development, Hackettatown, Sl	korriga Ca Dublin	Job Reference		
Residential Development, Hackettstown, Si	kernes, Co. Dublin	190170		
SUBJECT		Calc. Sheet No.		
REGIONAL DRAINAGE FACILITY		1		
		.		
DRAWING NUMBER 190170-DBEL-SW-SP-DR-C-1011	Calculations by		Date 14/02/2022	
		LINCL	17/02/2022	
BIORETENTION AREA				
Surface Area of Bioretention Area (A _f)		1,628.0 m ²		
TREATMENT VOLUME				
¹ Trootmont Volume (V)		4000 C 3		
Treatment volume (v_T)		1020.0 m ²		
CATCHMENT AREA				
Effective Impermeable Area Covered for Tr	eatment (A)	152380.8 m ²	15.2 ha	
INPUT DATA				
² Filter Bed Depth (L)		0.200 m		
Coefficient of Permeability of Filter Medium	(k)	0.00002 m/s		
	(K)	0.00002		
³ Average Height of Water above Filter Bed	(h)	<u>0.450</u> m		
⁴ Time Required for Percolation (t)		48.0 hr		
INFILTRATION VOLUME				
Subgrade Infiltration Rate per hour		29.5 mm/hr		
Subgrade Infiltration Rate (f)		0.008 mm/s		
⁵ Subgrade Infiltration Values				
Subgrade inflitration volume		343.3 m		
Notes				
¹ Treatment Volume Vt (m ³) = Impermeable Area (ha	a) x 15mm x 10 x 80% (GDSDS Sec	tion 6.3.1.2.1).		
² Filter Bed depth typically between 0.9 and 1.5m	.,	,		
3 h = Half maximum height, where hmax <=2m				
4 Typically between 24 and 48 hours		Table: 1 Coefficient of Perme	eability of Filter Medium	
5 Volume calculated using 6 hour storm event.		Soil Type/Texture	Infiltration Ra	te (m/s)
		Source: SUDS Manual Table	25-1	
Area of Bioretention Filter Bed = $V_T \cdot L$		Gravel	0.0003 - 0	0.03
		Sand	0.00001 - 0.0	00005
k(h+L))t	Loamy Sand	0.0001 - 0.0	0003
		Sandy Loam	0.0000001 - 0	00005
		Silt Loam	0.0000001 - 0	.00001
		Chalk	0.00000003 - 0	.000003
		Sandy Clay Loam	0.000000003 - (0.0000003
		Silty Clay Loam	0.0000001 - 0.	000001

Clay

Till

< 0.0000003

0.00000003 - 0.000003

TITLE Residential Development at Hackettstown, Sker	ries, Co. Dublin	Job Reference 190170		
SUBJECT Interception/Treatment Volume Summary		Calc. Sheet No. 1		
DRAWING NUMBER 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by LMCL	Date 14/02/2022	
<u>INPUT DATA</u>				
Interception Volume Required	51.892	m ³		
Treatment Volume Required	155.676	m ³		
<u>Catchment</u>	Interception Volum	<u>es T</u>	reatment Volumes	
Swales Bio-Retention/ Tree Pits Permeable Paving Filter Drain Regional Drainage Facility	6.8 83.4 843.5 30.7 345.5	m ³ m ³ m ³ m ³ m ³	21.4 m ³ 25.1 m ³ 310.2 m ³ 105.1 m ³ 1828.6 m ³	
- Total Volumes Provided	1309.9	m ³	2290.4 m ³	
Check Provided Volumes are greater than Required Volumes	PASS		PASS	
Not considering Regional Drainage Facility:				
Total Volumes Provided	964.4	m ³	461.8 m ³	
Check Provided Volumes are greater than Required Volumes	PASS		PASS	

APPENDIX E

Permissible Site Discharge Calculations

PROJECT Residential Development at Hackettstown,	Skerries, Co. Dublin		JOB REF. 190170
SUBJECT Surface Water Calculations - Permissible S	ite Discharge		Calc. Sheet No. 1
Drawing ref.	Calculations by	Checked by	Date
00170-DBFL-SW-SP-DR-C-1011 RSP BJM			26/09/2020

PERMISSIBL	E SURFACE WATER DISCHARGE CALCULATIONS						
Site Area							
What is the ove	rall site area?	6.94	Hectares (ha)	Site is Less than 5) Hectare	S	
Pre-Developmen	t Catchment Soil Characteristics						
Are there differe	ent soil types present on the pre-developed site?	No	1				
	Catchment This refers to the entire site area	1	1		SOIL	SOIL Value	SPR
	Area	6.94	Hectares (ha)		1	0.15	0.10
	Drainage Group	1	Class		2	0.30	0.30
	Depth to Impermeable Layers	2	Class		3	0.40	0.37
	Permeability Group above Impermeable Layers Slope ⁽⁰⁾	3	Class		4	0.45	0.47
	SOIL Type	3	From FSR Table		5	0.00	0.00
	SOIL Index	0.40	1				
Site SOIL Index	Value	0.40	1				
Site SPR Value		0.37					
Sile SPR value		0.37					
Post-Developm	nent Catchment Characteristics						
Is the developm	ent divided into sub-catchments?	No	1				
What is the ove	rall site area for catchment?	6.94	Hectares (ha)				
	Catchment 1	Area (m ²)	Runoff Coeff.	Effective Area (m ²)			
	Roofs - Type 1 (Draining to traditional gullies)	488	1.00	488.0			
	Roofs - Type 2 (Draining to SUDS features)	14216	0.70	9951.2			
	Roofs - Type 3 (Extensive Green Roofs, 2-4cm depth)	0	0.70	0.0			
	Paved Garden Areas - Hardstanding Roads and Footpaths - Type 1 (Draining to traditional gullies)	5745	1.00	5745.0			
	Roads and Footpaths - Type 2 (Draining to Suds features)	6801	0.75	5100.8			
	Permeable Paving	4635	0.50	2317.5			
	Bioretention Areas - Type 1 (Filter Drains)	3228	0.70	2259.6			
	Bioretention Areas - Type 2 (Tree Pits and Swales)	329	0.70	230.3			
	Public Open Space - Considered to drain to Surface Water Public Open Space - Considered to not drain to Surface Water	20143	0.30	3578.7 6042.9			
					1		
	Include All Public Open Space in Effective Catchment Area?	No		Assumed open space are	a does not d	rain to surface wate	r network
	Effective Catchment Area	31447.1	m²				
	Effective Catchment Runoff Coefficient	0.64					
Long-Term Sto	rade						
le long torm Ste	vrago provided?	No	1				
is long-term Sto	rage provided?	INU					
<u>Permissible Si</u>	te Discharge						
What is the Sta	ndard Average Annual Rainfall (SAAR)?	735.0	mm	From Met Eireann, Co-or	dinates xxxxx	XXX, XXXXX	
Is the overall sit	e area less than 50 hectares?	Yes	7				
⁵ QBAR _{Rural} calo	culated for 50 ha and linearly interpolated for area of site	25.0	Litres/sec				
⁷ Site Discharge	=	25.0	Litres/sec				
Notes and For	nuiae						
1. SOIL index value calcula	ated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table 4.	5).					
 SPR value calculated from 3 Rainfall depth for 100 value 	m GDSDS - Table 6.7.						
4. Long-term storage Vol _{xs}	(m^3) = Rainfall.Area.10.[(PIMP/100)(0.8. α)+(1-PIMP/100)(β .SPR)-SPR]. (GDSDS Section 6.7.3).						
Where long-term st	orage cannot be provided on-site due to ground conditions, Total Permissible Outflow is to be kept to QBAR	(Rural).					
5. Total Permissible Outflo	w - QBAR (Rural) calculated in accordance with GDSDS - Regional Drainage Policies						
(Volume 2 - Chapte	r 6), i.e. QBAR(m3/s)=0.00108x(Area) ^{v.ov} (SAAR) ^{1.1} (SOIL) ^{2.17} - For catchments greater than 50 hectares in	n area. Flow rates are line	early interpolated for areas	samller than 50hectares.			
 Where Total Permissible QBAR multiplied by grow 	e outriow is less than 2.01/s and not achievable, use 2.01/s or closest value possible. with factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figure	: C2.					

1. Soil index (SPR) value calculated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table 4.5).

APPENDIX F

Interception and Treatment Volumes Calculations

Interception Volume			
PROJECT Residential Development at Hackettstown, S	kerries, Co. Dublin		JOB REF. 190170
SUBJECT Surface Water Calculations - Interception Vo	lume		Calc. Sheet No. 3
Drawing ref. 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by BJM	Date 26/09/2020

	SURFACE WATER CAL	CULAT	IONS		 	
	Site Area					
I	Total Site Area =	6.94	Hectares (ha)	l		
	Interception Volume (Post-	Developn	<u>nent)</u>			
	Impermeable Area =	1.297	Hectares (ha)	1		
	Rainfall Depth =	5	mm	1		
	Infiltration Volume =	51.9	m°			
■ <u>Notes</u> 1. Infiltration Volume (m ³) = Impermeable Area (ha)	x 5mm x 10 (GDSDS Section 6.3.1.2.1). For sites where a por	nd is applicable.	<u> </u>	•		

80% runoff from impermeable areas assumed.

Treatment Volume			
PROJECT Residential Development at Hackettstown, S	kerries, Co. Dublin		JOB REF. 190170
SUBJECT Surface Water Calculations - Treatment Volu	ime		Calc. Sheet No. 2
Drawing ref. 190170-DBFL-SW-SP-DR-C-1011	Calculations by RSP	Checked by BJM	Date 26/09/2020

	SURFACE WATER CAL		TIONS		 	
	<u>Site Area</u>					
r				4		
L	Total Site Area =	6.94 <u>t-Develo</u>	Hectares (ha) pment)	I		
ſ	Total Site Area = Pond Treatment Volume (Post Impermeable Area =	6.94 <u>t-Develo</u> 1.297	Hectares (ha) pment) Hectares (ha)]		
	Total Site Area = Pond Treatment Volume (Posi Impermeable Area = Rainfall Depth =	6.94 <u>t</u>-Develo <u>1.297</u> 15	Hectares (ha) pment) Hectares (ha) mm			

APPENDIX G

Surface Water Network Calculations

DBFL Consulting Engineers									
Ormond House	Residential Development at								
Upper Ormond Quay	Hackettstown, Skerries								
Dublin 7	Co. Dublin	Mirro							
Date 14/02/2022 14:28	Dcainado								
File 190170-	Diamage								
Innovyze	Network 2019.1								
STORM SEWER DESIGN Design Pipe Sizes ST FSR Rainfall Return Period (years) M5-60 (mm) Ratio F Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins) Foul Sewage (1/s/ha)	by the Modified Rational Method n Criteria for SW_1 ANDARD Manhole Sizes STANDARD Model - Scotland and Ireland 100 PIMP (%) 15.600 Add Flow / Climate Change (%) 2 0.272 Minimum Backdrop Height (m) 0 150 Maximum Backdrop Height (m) 2 30 Min Design Depth for Optimisation (m) 0 0.000 Min Vel for Auto Design only (m/s) 0.750 Min Gauge for Optimisation (M) 0	64 20).200 2.000).000 1.00							
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X)	500							
Design	ned with Level Inverts								
Network	Design Table for SW_1								
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi	E. Base k HYD DIA Section Type Avins) Flow (l/s) (mm) SECT (mm) Dep	uto sign							
1.000 34.677 0.229 151.4 0.100 4	4.00 0.0 0.150 o 225 Pipe/Conduit	ø							
2.000 33.538 0.664 50.5 0.120 4	4.00 0.0 0.150 o 225 Pipe/Conduit	æ							
1.001 21.236 0.260 81.7 0.054 (0.00 0.0 0.150 o 300 Pipe/Conduit	Ĵ							
3.000 65.441 0.388 168.7 0.261 4	4.00 0.0 0.150 o 300 Pipe/Conduit	Ð							
1.002 12.051 0.048 250.0 0.019 0	0.00 0.0 0.150 o 450 Pipe/Conduit	đ							
1.003 22.509 0.075 300.0 0.050 (0.00 0.0 0.150 o 450 Pipe/Conduit	đ							
1.004 24.874 0.124 200.0 0.015 (1.005 20.374 0.209 97.4 0.042 (0.00 0.0 0.150 o 450 Pipe/Conduit	e e e e e e e e e e e e e e e e e e e							
1.005 20.374 0.209 97.4 0.042 0.00 0.0 0.150 o 450 Pipe/Conduit g									
PN Rain T.C. US/IL Σ I (mm/hr) (mins) (m) (h	Area E Base Foul Add Flow Vel Cap Flow a) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s	w 3)							
1.000 108.66 4.47 23.818 0	.100 0.0 0.0 5.9 1.23 49.0 35.	. 5							
2.000 110.22 4.26 24.253 0	.120 0.0 0.0 7.1 2.17 86.1 42.	. 9							
1.001 107.42 4.64 23.589 0	.274 0.0 0.0 15.9 2.03 143.4 95.	. 6							
3.000 106.47 4.78 23.717 0	.261 0.0 0.0 15.1 1.40 98.9 90.	. 4							
1.002 105.55 4.92 23.329 0	.554 0.0 0.0 31.6 1.47 234.4 189.	. 9							
1.003 103.71 5.20 23.281 0	.604 0.0 0.0 33.9 1.34 213.4 203.	. 4							
1.004 102.13 5.45 23.206 0 1.005 101.26 5.59 23.081 0	.619 0.0 0.0 34.2 1.65 262.9 205. .660 0.0 0.0 36.2 2.39 379.7 217.	. 4							

©1982-2019 Innovyze

DBFL Consulting Engineers		Page 1
Ormond House	Residential Development at	
Upper Ormond Quay	Hackettstown, Skerries	
Dublin 7	Co. Dublin	Micro
Date 14/02/2022 14:28	Designed by parkesr	Desinago
File 190170-	Checked by	Diamage
Innovyze	Network 2019.1	•

Network Design Table for SW_1

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section (m) (m) (1:X) (ha) (mins) Flow (l/s) (mm) SECT (mm)	ı Type Auto Design
4.000 33.291 0.166 200.0 0.401 4.00 0.0 0.150 0 375 Pipe/Co 4.001 34.326 0.221 155.1 0.000 0.00 0.0 0.150 0 375 Pipe/Co	onduit 💣 onduit 💣
1.006 35.558 0.474 75.0 0.168 0.00 0.0 0.150 o 450 Pipe/Co	onduit 💣
1.007 36.284 0.484 75.0 0.038 0.00 0.0 0.150 0 450 Pipe/Cc 1.008 8.734 0.116 75.0 0.039 0.00 0.0 0.150 0 450 Pipe/Cc	nduit 🖑
1.009 32.267 0.538 60.0 0.351 0.00 0.0 0.150 o 525 Pipe/Cc 1.010 34.608 0.173 200.0 0.000 0.00 0.0 0.150 o 600 Pipe/Cc	onduit 💣
1.011 40.817 0.408 100.0 0.000 0.00 0.0 0.150 0 600 Pipe/Cc 1.012 43.555 3.064 14.2 0.000 0.00 0.0 0.150 0 600 Pipe/Cc 1.012 23.241 1.214 25.0 0.000 0.00 0.0 0.150 0 600 Pipe/Cc	onduit 🔐 onduit 🔐

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
4.000	109.34	4.38	23.260	0.401	0.0	0.0	23.7	1.47	162.9	142.4
4.001	106.91	4.72	23.094	0.401	0.0	0.0	23.7	1.68	185.6	142.4
1.006	99.97	5.81	22.872	1.229	0.0	0.0	66.5	2.73	433.6	399.2
1.007	98.70	6.03	22.098	1.267	0.0	0.0	67.7	2.73	433.6	406.2
1.008	98.39	6.08	21.150	1.306	0.0	0.0	69.6	2.73	433.6	417.5
1.009	97.51	6.24	21.034	1.657	0.0	0.0	87.5	3.36	727.0	525.1
1.010	95.94	6.53	20.496	1.657	0.0	0.0	87.5	1.98	558.5	525.1
1.011	94.68	6.78	20.323	1.657	0.0	0.0	87.5	2.81	795.0	525.1
1.012	94.20	6.87	19.915	1.657	0.0	0.0	87.5	7.54	2131.3	525.1
1.013	93.75	6.96	16.851	1.657	0.0	0.0	87.5	5.67	1603.9	525.1

DBFL Consulting Engineers		Page 2
Ormond House	Residential Development at	
Upper Ormond Quay	Hackettstown, Skerries	
Dublin 7	Co. Dublin	Micro
Date 14/02/2022 14:28	Designed by parkesr	Desinado
File 190170-	Checked by	Diamage
Innovyze	Network 2019.1	

PIPELINE SCHEDULES for SW_1

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	S14	24.986	23.818	0.943	Open Manhole	1200
2.000	0	225	S13.1	25.683	24.253	1.205	Open Manhole	1200
1.001	0	300	S13	25.206	23.589	1.317	Open Manhole	1200
3.000	0	300	S12.1	24.682	23.717	0.665	Open Manhole	1200
1.002	0	450	S12	25.263	23.329	1.484	Open Manhole	1350
1.003	0	450	SII	24.415	23.281	0.684	Open Manhole	1350
1.004	0	450	SIU	25.538	23.206	1.882	Open Mannole	1350
1.005	0	450	S9	25.438	23.081	1.907	Open Manhole	1350
4.000	0	375	S8.2	24.416	23.260	0.781	Open Manhole	1350
4.001	0	375	S8.1	24.558	23.094	1.089	Open Manhole	1350
1.006	0	450	S8	24.919	22.872	1.597	Open Manhole	1350
1.007	0	450	S7	24.029	22.098	1.481	Open Manhole	1350
1.008	0	450	S6	23.042	21.150	1.442	Open Manhole	1350
1.009	0	525	S5	22.765	21.034	1.206	- Open Manhole	1500
1.010	0	600	S4.1	22.477	20.496	1.381	Open Manhole	1500
			-				-	

Downstream Manhole

PN	Length (m)	Slope	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)		
	. ,	,		. ,		. ,				
1.000	34.677	151.4	S13	25.206	23.589	1.392	Open Manhole	1200		
2.000	33.538	50.5	S13	25.206	23.589	1.392	Open Manhole	1200		
1.001	21.236	81.7	S12	25.263	23.329	1.634	Open Manhole	1350		
3.000	65.441	168.7	S12	25.263	23.329	1.634	Open Manhole	1350		
1.002	12.051	250.0	S11	24.415	23.281	0.684	Open Manhole	1350		
1.003	22.509	300.0	S10	25.538	23.206	1.882	Open Manhole	1350		
1.004	24.874	200.0	S9	25.438	23.081	1.907	Open Manhole	1350		
1.005	20.374	97.4	S8	24.919	22.872	1.597	Open Manhole	1350		
4 000	22 201	200 0	CQ 1	24 559	22 004	1 090	Open Marhele	1250		
4.000	33.291	200.0	30.1	24.550	23.094	1.009		1350		
4.001	34.326	155.1	58	24.919	22.8/2	1.6/2	Open Mannole	1350		
1.006	35.558	75.0	S7	24.029	22.398	1.181	Open Manhole	1350		
1.007	36.284	75.0	S6	23.042	21.614	0.978	Open Manhole	1350		
1.008	8.734	75.0	S5	22.765	21.034	1,281	Open Manhole	1500		
1 009	32 267	60 0	S4 1	22 477	20 496	1 456	Open Manhole	1500		
1 010	34 608	200 0	Q1.1	24 300	20 323	3 377	Open Manhole	1500		
1.010	51.000	200.0	FC	24.500	20.525	5.577	open mannore	1300		
	©1982-2019 Innovyze									

DBFL Consulting Engineers	Page 3								
Ormond House	Residential Development at								
Upper Ormond Quay	Hackettstown, Skerries								
Dublin 7	Co. Dublin Micco								
Date 14/02/2022 14:28	Designed by parkesr								
File 190170-	Checked by								
Innovyze	Network 2019.1								
-									
PIPELIN	NE SCHEDULES for SW_1								
U	pstream Manhole								
PN Hyd Diam MH C.Leve	1 I.Level D.Depth MH MH DIAM., L*W								
Sect (mm) Name (m)									
1.011 o 600 S4 24.30	0 20.323 3.377 Open Manhole 1500								
1.012 0 600 S3 21.81	3 19.915 1.298 Open Manhole 1500								
1.015 0 000 52 20.20	1 10.851 2.750 Open Mannore 1500								
Do	wnstream Manhole								
PN Length Slope MH C.Lev	rel I.Level D.Depth MH MH DIAM., L*W								
(m) (1:X) Name (m)) (m) (m) Connection (mm)								
1.011 40.817 100.0 53 21.8	13 19 915 1.298 Open Manhole 1500								
1.012 43.555 14.2 S2 20.2	201 16.851 2.750 Open Manhole 1500								
1.013 30.341 25.0 S1 16.6	573 15.637 0.436 Open Manhole 1200								
Free Flowing Outfall Details for SW_1									
Outfall Outfall C. Level T. Level Min D.T. W									
Pipe Number Name	(m) (m) I. Level (mm) (mm)								
	(m)								
1 013 51	16 673 15 637 0 000 1200 0								
1.015	10.075 15.057 0.000 1200 0								
Simulat	ion Criteria for SW_1								
Volumetric Runoff Coeff	0.750 Additional Flow - % of Total Flow 20.000								
Areal Reduction Factor	1.000 MADD Factor * 10m ³ /ha Storage 2.000								
Hot Start Level (mm)	0 Flow per Person per Day (l/per/day) 0.000								
Manhole Headloss Coeff (Global)	0.500 Run Time (mins) 60								
Foul Sewage per hectare (1/s)	0.000 Output Interval (mins) 1								
Number of Input Hydrographs 0 Numbe	r of Offline Controls 0 Number of Time/Area Diagrams 0								
Number of Online Controls 0 Number	of Storage Structures 0 Number of Real Time Controls 0								
Synthe	tic Rainfall Details								
Deinfell Medel									
Return Period (years)	100 Cv (Summer) 0.750								
Region Scotl	and and Ireland Cv (Winter) 0.840								
M5-60 (mm)	15.600 Storm Duration (mins) 30								
Ratio R	0.272								

©1982-2019 Innovyze

DBFL Consulting Engineers											age O
Ormond House				Res	idential	Develo	opment at				
Upper Ormond Qua	У			Hac	Hackesttstown, Skerries						
Dublin 7				Co.	Dublin						Micro
Date 14/02/2022	14:41			Des	igned by g	parkes	sr				Drainago
File 190170-				Che	cked by						Diamage
Innovyze				Net	work 2019	.1					
STORM SEWER DESIGN by the Modified Rational Method											
Design Criteria for SW_2											
Pipe Sizes STANDARD Manhole Sizes STANDARD											
	D	F	SR Rainf	all Mod	el - Scotlar	nd and	Ireland			(&)	61
	R	eturn Pe	M5-60	(mm) 15	.600	Add F	'low / Clin	nate Cl	hange ((중) (응)	20
			Rat	io R 0	.272	Mir	imum Backo	lrop He	eight ((m) 0	.200
Mawimum 7	Maxir Maxir	num Rain Concontr	fall (mm,	/hr)	150 20 Min Do	Max nian Da	imum Backo	lrop He	eight (ation ((m) 2	.000
Maximum		Foul Sew	age (l/s,	/ha) 0	.000 Min Des	Vel fo	or Auto Des	sign of	nly (m/	(m) 0 /s) 1	1.00
	Volur	metric R	unoff Coe	eff. O	.750 M	in Slop	e for Opti	misat	ion (1:	: X)	500
			De	signed y	with Level -	Invorte					
			De	signed	with never .						
Network Design Table for SW_2											
PN Le	ngth Fa (m) (m	ll Slop n) (1:X	e I.Area) (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD DIA SECT (mm)	Secti	lon Typ	e Au Des	ito sign
1 000 17	275 0 2	19 50	0 0 0 2 2	4 00	0.0	0 150	0 225	Ding	Condui	+ _	۵
1.000 17	.104 0.7	782 50.	0 0.033	4.00	0.0	0.150	o 225	Pipe/	Condui	.t	y A
1.002 14	.239 0.0	71 200.	0 0.000	0.00	0.0	0.150	o 225	Pipe/	'Condui	.t	P
1.003 25	.573 0.1	.28 199.	8 0.093	0.00	0.0	0.150	o 300	Pipe/	Condui	.t	P
2.000 45	.784 1.1	45 40.	0 0.147	4.00	0.0	0.150	o 225	Pipe/	'Condui	t (ð
1.004 79	.274 0.7	93 100.	0 0.255	0.00	0.0	0.150	o 375	Pipe/	Condui	t (P
3.000 64	.025 2.5	61 25.	0 0.227	4.00	0.0	0.150	o 225	Pipe/	Condui	t	<u>n</u>
3.001 12	.998 0.2	260 50.	0 0.000	0.00	0.0	0.150	o 225	Pipe/	Condui	.t	J
1.005 43	.979 1.7	259 25.	0 0.134	0.00	0.0	0.150	o 375	Pipe/	'Condui	t (9
			N	etwork	Results '	Table					
PN	Rain	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	7
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)
1.000	111.16	4.13	23.517	0.033	0 0	0.0	2.0	2.18	86.5	12	0
1.001	108.93	4.43	23.170	0.083	0.0	0.0	4.9	2.18	86.5	29.	5
1.002	107.34	4.65	22.387	0.083	0.0	0.0	4.9	1.07	42.4	29.	5
1.003	105.07	4.99	22.316	0.176	0.0	0.0	10.0	1.28	90.6	60.	1
2.000	109.81	4.31	24.139	0.147	0.0	0.0	8.7	2.44	97.0	52.	3
1.004	101.10	5.62	22.188	0.577	0.0	0.0	31.6	2.10	232.3	189.	7
3.000	109.57	4.34	24.514	0.227	0.0	0.0	13.5	3.10	123.1	80.	9
3.001	108.84	4.44	21.953	0.227	0.0	0.0	13.5	2.18	86.5	80.	9
1.005	100.08	5.79	21.395	0.939	0.0	0.0	50.9	4.25	469.6	305.	4
				©1982-	2019 Inno	vyze					

DBFL Consulting Engineers		Page 1
Ormond House	Residential Development at	
Upper Ormond Quay	Hackesttstown, Skerries	
Dublin 7	Co. Dublin	Micro
Date 14/02/2022 14:41	Designed by parkesr	Dcainago
File 190170-	Checked by	Diamage
Innovyze	Network 2019.1	•

Network Design Table for SW_2

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.006	61.013 11.709	1.525	40.0 15.0	0.170	0.00		0.0	0.150	0	375 375	Pipe/Conduit	ð
1.008	25.252	1.263	20.0	0.424	0.00		0.0	0.150	0	375	Pipe/Conduit	ď
1.009 1.010	22.990 21.084	0.858 0.210	26.8 100.4	0.000 0.000	0.00 0.00		0.0 0.0	0.150 0.150	0 0	450 525	Pipe/Conduit Pipe/Conduit	ð

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
1.006	98.34	6.09	19.636	1.108	0.0	0.0	59.0	3.35	370.2	354.3
1.007	98.14	6.13	18.111	1.133	0.0	0.0	60.3	5.50	607.9	361.5
1.008	97.65	6.21	17.330	1.558	0.0	0.0	82.4	4.76	525.7	494.4
1.009	97.19	6.30	16.068	1.558	0.0	0.0	82.4	4.59	730.5	494.4
1.010	96.46	6.43	15.210	1.558	0.0	0.0	82.4	2.59	559.6	494.4

DBFL Consulting Engineers		Page 2
Ormond House	Residential Development at	
Upper Ormond Quay	Hackesttstown, Skerries	
Dublin 7	Co. Dublin	Micro
Date 14/02/2022 14:41	Designed by parkesr	Desinado
File 190170-	Checked by	Diamage
Innovyze	Network 2019.1	

$\underline{\mbox{PIPELINE}}$ SCHEDULES for SW_2

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	S26	25.030	23.517	1.288	Open Manhole	1200
1.001	0	225	S25	24.626	23.170	1.232	Open Manhole	1200
1.002	0	225	S24	23.649	22.387	1.037	Open Manhole	1200
1.003	0	300	S23	23.861	22.316	1.245	Open Manhole	1200
2.000	0	225	S22.1	25.578	24.139	1.214	Open Manhole	1200
1.004	0	375	S22	24.196	22.188	1.633	Open Manhole	1350
3.000	0	225	S21.2	25.768	24.514	1.029	Open Manhole	1200
3.001	0	225	S21.1	23.578	21.953	1.400	Open Manhole	1200
1.005	0	375	S21	23.063	21.395	1.293	Open Manhole	1350
1.006	0	375	S20	21.250	19.636	1.239	Open Manhole	1350
1.007	0	375	S19	20.429	18.111	1.943	Open Manhole	1350
1.008	0	375	S18	19.861	17.330	2.156	Open Manhole	1350
1.009	0	450	S17	18.625	16.068	2.107	Open Manhole	1350
1.010	0	525	S16	17.758	15.210	2.023	Open Manhole	1500

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connectio	MH DIAM., L*W n (mm)
1.000	17.375	50.0	S25	24.626	23.170	1.232	Open Manho	le 1200
1.001	39.104	50.0	S24	23.649	22.387	1.037	Open Manho	le 1200
1.002	14.239	200.0	S23	23.861	22.316	1.320	Open Manho	le 1200
1.003	25.573	199.8	S22	24.196	22.188	1.708	Open Manho	le 1350
2.000	45.784	40.0	S22	24.196	22.994	0.977	Open Manho	le 1350
1.004	79.274	100.0	S21	23.063	21.395	1.293	Open Manho	le 1350
3.000	64.025	25.0	S21.1	23.578	21.953	1.400	Open Manho	le 1200
3.001	12.998	50.0	S21	23.063	21.693	1.145	Open Manho	le 1350
1.005	43.979	25.0	S20	21.250	19.636	1.239	Open Manho	le 1350
1.006	61.013	40.0	S19	20.429	18.111	1.943	Open Manho	le 1350
1.007	11.709	15.0	S18	19.861	17.330	2.156	Open Manho	le 1350
1.008	25.252	20.0	S17	18.625	16.068	2.182	Open Manho	le 1350
1.009	22.990	26.8	S16	17.758	15.210	2.098	Open Manho	le 1500
1.010	21.084	100.4	S15	16.200	15.000	0.675	Open Manho	le 1200

DBFL Consulting Engineers		Page 3
Ormond House	Residential Development at	
Upper Ormond Quay	Hackesttstown, Skerries	
Dublin 7	Co. Dublin	Micro
Date 14/02/2022 14:41	Designed by parkesr	Dcainago
File 190170-	Checked by	Diginade
Innovyze	Network 2019.1	
<u>Free Flowing</u> Outfall Outfall Pipe Number Name 1.010 S15	g Outfall Details for SW_2 C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 16.200 15.000 0.000 1200 0	
Simulat	ion Criteria for SW_2	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s)	0.750 Additional Flow - % of Total Flow 20.0 1.000 MADD Factor * 10m ³ /ha Storage 2.0 0 Inlet Coefficcient 0.8 0 Flow per Person per Day (1/per/day) 0.0 0.500 Run Time (mins) 0.000 Output Interval (mins)	000 000 000 60 1

Number of Input Hydrographs0Number of Offline Controls0Number of Time/Area Diagrams0Number of Online Controls0Number of Storage Structures0Number of Real Time Controls0

Synthetic Rainfall Details

Rainfall Model			FSR		Profi	le Type	Summer
Return Period (years)			5		Cv (Summer)	0.750
Region	Scotland	and	Ireland		Cv (Winter)	0.840
M5-60 (mm)			15.600	Storm	Duration	(mins)	30
Ratio R			0.272				

©1982-2019 Innovyze

APPENDIX H

Surface Water Network Critical Storm Calculations
DBFL Consulting Engineers							
Ormond House	Residential Development at						
Upper Ormond Quay	Hackettstown, Skerries						
Dublin 7	Co. Dublin	Micco					
Date 14/02/2022 14:29	Designed by parkesr	Desinado					
File 190170-	Checked by	Dialitacje					
Innovyze	Network 2019.1						
Summary of Critical Results by Maximum Level (Rank 1) for SW_1							
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficcient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000							
Number of Input Hydrographs 0 Number Number of Online Controls 0 Number	r of Offline Controls 0 Number of Time/Area Dia of Storage Structures 0 Number of Real Time Con	grams 0 trols 0					
Synth Rainfall Model Region Scotland and Margin for Flood Risk Anal	hetic Rainfall Details FSR M5-60 (mm) 15.600 Cv (Summer) 0.750 Ireland Ratio R 0.272 Cv (Winter) 0.750 Warning (mm) 300.0 DVD Status OFF ysis Timestep Fine Inertia Status OFF DTS Status ON						
Profile(s) Duration(s) (mins) 15, Return Period(s) (years) Climate Change (%)	Summer and Winter 30, 60, 120, 180, 240, 360, 480, 600, 720, 960 1440, 2160, 2880, 4320, 5760, 7200, 8640, 1008 100 20	r , 0 0					
	Water Surg	charged Flooded					
US/MH Return Climate First PN Name Storm Period Change Surch	(X) First (Y) First (Z) Overflow Level D arge Flood Overflow Act. (m)	epth Volume (m) (m ³)					
1.000 S14 15 Summer 100 +20% 100/15	Summer 24.333	0.290 0.000					
2.000 S13.1 15 Summer 100 +20%	24.428	-0.050 0.000					
1.001 S13 15 Summer 100 +20% 100/15	Summer 24.183	0.294 0.000					
3.000 SI2.1 IS Summer $100 + 20% 100/151 002 S12 15 Summer 100 + 20\% 100/15$	Summer 24.411 Summer 24.009	0.394 0.000					
1.002 S12 IS Summer 100 +20% 100/15 1.003 S11 15 Summer 100 +20% 100/15	Summer 23.886	0.155 0.000					
1.004 S10 15 Summer 100 +20% 100/15	Summer 23.743	0.087 0.000					
1.005 S9 15 Summer 100 +20% 100/15	Summer 23.588	0.057 0.000					
4.000 S8.2 15 Summer 100 +20% 100/15	Summer 23.813	0.178 0.000					
4.001 S8.1 15 Summer 100 +20% 100/15	Summer 23.632	0.164 0.000					
1.006 S8 15 Summer 100 +20% 100/15	Summer 23.440	0.118 0.000					
1.007 S7 15 Summer 100 +20% 100/15	Summer 22.749	0.201 0.000					
1.008 S6 30 Summer 100 +20% 100/15	Summer 22.128	0.528 0.000					
1.009 S5 15 Summer 100 +20% 100/15	Summer 21.621	0.063 0.000					
1.010 S4.1 15 Summer 100 +20% 100/15	Summer 21.157	0.061 0.000					
1.011 S4 30 Summer 100 +20%	20.729	-0.193 0.000					
1.012 S3 30 Summer 100 $+20\%$ 1.013 S2 15 Summer 100 $+20\%$	20.135 17.137	-0.314 0.000					
©1982-2019 Innovyze							
©1	982-2019 Innovyze						

DBFL Consulting Engineers		Page 1
Ormond House	Residential Development at	
Upper Ormond Quay	Hackettstown, Skerries	
Dublin 7	Co. Dublin	Micro
Date 14/02/2022 14:29	Designed by parkesr	Dcainago
File 190170-	Checked by	Diamage
Innovyze	Network 2019.1	4

Summary of Critical Results by Maximum Level (Rank 1) for SW_1

				Pipe		
	US/MH	Flow /	Overflow	Flow		Level
PN	Name	Cap.	(1/s)	(l/s)	Status	Exceeded
1 0 0 0	~1.4				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1.000	S14	0.84		37.9	SURCHARGED	
2.000	S13.1	0.70		55.0	OK	
1.001	S13	0.88		106.7	SURCHARGED	
3.000	S12.1	1.06		98.6	FLOOD RISK	
1.002	S12	1.31		208.2	SURCHARGED	
1.003	S11	1.32		219.8	SURCHARGED	
1.004	S10	1.09		217.2	SURCHARGED	
1.005	S9	0.89		230.6	SURCHARGED	
4.000	S8.2	1.26		176.7	SURCHARGED	
4.001	S8.1	0.98		158.2	SURCHARGED	
1.006	S8	1.13		412.8	SURCHARGED	
1.007	S7	1.14		416.5	SURCHARGED	
1.008	S 6	2.21		424.2	SURCHARGED	
1.009	S5	0.91		511.3	SURCHARGED	
1.010	S4.1	1.22		508.8	SURCHARGED	
1.011	S4	0.80		510.3	OK	
1.012	S3	0.29		510.2	OK	
1.013	S2	0.46		506.1	OK	

DBFL Consul	lting Eng	gineers								Page ()
Ormond Hous	se				Resid	lential I	Developmer	nt at			
Upper Ormor	nd Quay				Hacke	esttstown	n, Skerrie	es			
Dublin 7	1 7 Co. Dublin							Mic			
Date 14/02/	e 14/02/2022 14:42 Designed by parkesr							Dcai			
File 190170	Lle 190170- Checked by							DIGI	nage		
Innovyze Network 2019.1											
Innovyze Network 2019.1 Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Region Scotland and Ireland Ratio R 0.272 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON											
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 100 Climate Change (%) 20											
US/MH		Return Cl	Limate	First	: (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume
PN Name	Storm	Period C	hange	Surch	arge	Flood	Overflow	Act.	(m)	(m)	(m³)
1.000 S26	15 Winter	100	+20%						23.586	-0.156	0.000
1.001 S25	15 Winter	100	+20%		_				23.280	-0.115	0.000
1.002 S24	15 Winter	100	+20%	100/15	Summer				23.105	0.492	0.000
1.003 523	15 Winter	100	+20% +20%	100/15	Summer				23.060	0.443	0.000
1 004 \$22	15 Winter	100	+20%	100/15	Summer				27.200	-0.078	0.000
3 000 921 2	15 Winter	100	+20%	100/15	Summer				24 681	-0.058	0.000
3,001 821 1	15 Winter	100	+20%	100/15	Summer				22 600	0.038	0 000
1.005 521	15 Winter	100	+20%	100/15	Summer				22.273	0 502	0.000
1.006 520	15 Winter	100	+20%	100/15	Summer				21.221	1.210	0.000
1.007 S19	15 Winter	100	+20%	100/15	Summer				19.417	0.931	0.000
1.008 518	15 Winter	100	+20%	100/15	Summer				18.569	0.863	0,000
1.009 \$17	15 Winter	100	+20%	100/15	Summer				16.776	0.258	0.000
1.010 S16	15 Winter	100	+20%	100/15	Summer				15.944	0.209	0.000
						Pipe					
			US/MH	Flow /	Overf:	Low Flow		Level			
		PN	Name	Cap.	(l/s) (l/s)	Status	Exceeded			
		1 000		0 01		15 6	077				
		1 001	, 9720 672	0.21		38 0 TD'0	OK OV				
		1 002		0.40		34 5	SURCHARGED				
		2.002	521		<u> </u>						
				©1	982-20	19 Innov	vyze				

DBFL Consulting Engineers		Page 1
Ormond House	Residential Development at	
Upper Ormond Quay	Hackesttstown, Skerries	
Dublin 7	Co. Dublin	Micco
Date 14/02/2022 14:42	Designed by parkesr	Dcainago
File 190170-	Checked by	Diamage
Innovyze	Network 2019.1	

Summary of Critical Results by Maximum Level (Rank 1) for SW_2

				Pipe		
	US/MH	Flow /	Overflow	Flow		Level
PN	Name	Cap.	(1/s)	(l/s)	Status	Exceeded
1.003	S23	0.84		65.6	SURCHARGED	
2.000	S22.1	0.75		68.6	OK	
1.004	S22	1.04		226.6	SURCHARGED	
3.000	S21.2	0.90		106.0	OK	
3.001	S21.1	1.46		103.8	SURCHARGED	
1.005	S21	0.81		337.1	SURCHARGED	
1.006	S20	1.09		371.1	FLOOD RISK	
1.007	S19	1.14		394.4	SURCHARGED	
1.008	S18	1.18		512.3	SURCHARGED	
1.009	S17	0.98		512.3	SURCHARGED	
1.010	S16	1.46		512.6	SURCHARGED	

Engineering Services Report

APPENDIX I

Water Demand Calculations

TITLE Proposed Residential Development H	ackettstown, Sk	erries, Co Dubl	Job Reference in 190170	
SUBJECT Water Demand - Post Development F	Residential		Calc. Sheet No. 1	TH
DRAWING NUMBER (190170-DBFL-WM-SP-DR-C-1031	Calculations by	Checked by LMcL	Date 08.03.22	
DEMAND				
Housing Units		345	no.	
Daily Demand per person		150	litres/person/day	
Average Occupancy Ratio ¹		2.7	person/unit	
Total Site Occupancy		932	people	
Average Daily Demand		139,725	l/day	
Average Day in Peak Week ²		174,656	l/day	
Normal Length of Day ³		12	hours	
Peak Factor ⁴		4.5		
Post Development Peak Water Den	nand⁵	9.1	l/s	
Post Development Average Water I	Demand	1.6	l/s	
Normal Demand ⁶		3.2	l/s	
Notes:				
 Occupancy ratio of 2.7 persons per dwellin Average Day in Peak Week is 1.25 times Assumed normal demand is the total daily Peak Factor for pipe sizing from Irish Wate Peak Factor multiplied by Average Day in Normal demand is the total daily demand Fire flow is required at 25l/s as per B.S. 53 	ng from Irish Water (the average daily de demand during the er Code of Practice f Peak Week flow during the normal le 306-1:1976.	Code of Practice for emand. normal length of da for Water Infrastruc ngth of day.	r Water Infrastructure. ay. ture	

TITLE Proposed Residential Developmen Co. Dublin SUBJECT Water Demand - Post Developmen	nt At Hackettstown	n, Skerries,	Job Refer 190170 Calc. Sheet 2	rence) No.	ŒFL
DRAWING NUMBER 190170-DBFL-WM-SP-DR-C-1031	Calculations by RSP	Checked by LMcL		Date 08.03.22	
DEMAND					
			Dail	y Demand	per person ¹
Day Staff	10	people		50	litres/person/day
Children	40	people		50	litres/person/day
Average Daily Demand		2,500	l/day		
Average Day in Peak Week ²		3,125	l/day		
Normal Length of Day ³		12	hours		
Peak Factor ⁴		5.0]		
Post Development Peak Water D	emand⁵	0.181	l/s		
Post Development Average Wate	er Demand	0.029	l/s		
Normal Demand ⁶		0.058	l/s		
Notes: 1. Daily Demand per person is 50 litres/p Infrastructure". 2. Average Day in Peak Week is 1.25 tim	erson/day for Staff tak	ten from Irish Wa	ater "Code c	of Practice for V	Wasterwater
 Assumed normal demand is the total d Peak Factor of 2.1 assumed due to siz Peak Factor multiplied by Average Day 	aily demand during the e of development.	e normal length	of day.		

- 6. Normal demand is the total daily demand during the normal length of day.
- 7. Fire flow is required at 25I/s as per B.S. 5306-1:1976.